

Lecture Notes in Computer Science 5119
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Samuel Kounev Ian Gorton Kai Sachs (Eds.)

Performance Evaluation:
Metrics, Models
and Benchmarks

SPEC International Performance Evaluation Workshop,
SIPEW 2008
Darmstadt, Germany, June 27-28, 2008
Proceedings

13

Volume Editors

Samuel Kounev
University of Cambridge
Computer Laboratory
William Gates Building, 15 JJ Thomson Avenue, Cambridge, CB3 0FD, UK
E-mail: skounev@acm.org

Ian Gorton
Pacific Northwest National Laboratory
Computational and Information Sciences
PO Box 999, MS: K7-90, Richland, WA, 99352, USA
E-mail: ian.gorton@pnl.gov

Kai Sachs
TU Darmstadt
Department of Computer Science, Databases and Distributed Systems Group
Hochschulstr. 10, 64289 Darmstadt, Germany
E-mail: sachs@dvs.tu-darmstadt.de

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.2.4, C.2.4, F.3, D.4, C.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-69813-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69813-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12321483 06/3180 5 4 3 2 1 0

Preface

This volume contains the papers presented at the SPEC International Perfor-
mance Evaluation Workshop held June 27–28 in Darmstadt, Germany.

From 39 submitted papers, 16 were selected for publication. Each submitted
paper was reviewed by three Program Committee members. The accepted papers
cover a range of different topics in performance evaluation with a good balance
between theoretical and practical contributions. The final workshop program, as
well as this volume, is organized in five subject areas:

– Models for Software Performance Engineering
– Benchmarks and Workload Characterization
– Profiling, Monitoring and Optimization
– Web Services and Service-Oriented Architectures
– Power and Performance

We were pleased to have Mor Harchol-Balter, Murray Woodside and Ulrich
Marquard give two keynote speeches and an invited talk, respectively. Prof.
Harchol-Balter spoke about her recent work on scheduling for server farms, while
Prof. Woodside spoke about the relationship between performance models and
performance data. Dr. Marquard gave a talk on the SAP standard application
benchmarks.

Many people contributed to the success of the workshop. First of all, we would
like to thank the members of the Program Committee for reviewing and evaluat-
ing the submitted papers and helping us to put together a high-quality workshop
program. Many thanks also to Alejandro Buchmann from the Technische Univer-
sität Darmstadt and John Henning from Sun Microsystems for serving as General
Chairs of the workshop and providing advice on many organizational issues.

We would like to thank the publisher, Springer, for their cooperation and
support. Thanks also to Pablo Guerrero, Christof Leng and Marion Braun from
the Technische Universität Darmstadt for designing the workshop website and
for their support with organizational matters. Furthermore, we would like to
thank our sponsors, SAP AG, Deutsche Telekom and Sun Microsystems for
their generous donations. Last but not least, we greatly appreciate the coopera-
tion of SPEC’s management and the SPEC office, in particular, the OSG Chair
Alan Adamson, SPEC President Walter Bays, Kathy Power and Dianne Rice
for their continued support.

May 2008 Samuel Kounev
Ian Gorton
Kai Sachs

Organization

SIPEW 2008 was organized by the department of Computer Science, TU Darm-
stadt and SPEC (Standard Performance Evaluation Corporation) in cooperation
with IEEE, IEEE Computer Society, Gesellschaft für Informatik (G.I.), MMB
and Informationstechnische Gesellschaft im VDE (ITG).

Executive Committee

General Co-chairs Alejandro Buchmann
(TU Darmstadt, Germany)
John Henning (Sun Microsystems, USA)

PC Co-chairs Samuel Kounev (University of Cambridge, UK)
Ian Gorton
(Pacific Northwest National Laboratory, USA)

Organizing Chair Kai Sachs (TU Darmstadt, Germany)

Program Committee

Alan Adamson IBM, Canada
Virǵılio Almeida Federal University of Minas Gerais, Brazil
Simonetta Balsamo Università Ca’ Foscari di Venezia, Italy
Falko Bause TU Dortmund, Germany
Umesh Bellur Indian Institute of Technology Bombay, India
Jeremy Bradley Imperial College London, UK
Gaurav Caprihan Oracle, India
Shiping Chen CSIRO ICT Centre, Australia
Vittorio Cortellessa Universita’ dell’Aquila, Italy
Andrea D’Ambrogio University of Rome “Tor Vergata”, Italy
Lieven Eeckhout Ghent University, Belgium
Rudolf Eigenmann Purdue University, USA
Stephen Gilmore University of Edinburgh, UK
Mor Harchol-Balter Carnegie Mellon University, USA
John Henning Sun Microsystems, USA
Helen Karatza Aristotle University of Thessaloniki, Greece
David Lilja University of Minnesota in Minneapolis, USA
Christoph Lindemann University of Leipzig, Germany
Daniel Menascé George Mason University, USA
José Merseguer Universidad de Zaragoza, Spain
John Murphy University College Dublin, Ireland
Harald Müller SAP, Germany
Dorina Petriu Carleton University, Canada

VIII Organization

Steve Realmuto BEA Systems, USA
Jeff Reilly Intel, USA
Kai Sachs TU Darmstadt, Germany
Gary Sevitsky IBM T.J. Watson Research Center, USA
George Tharakan Sun Microsystems, USA
Nigel Thomas University of Newcastle, UK
Petr Tuma Charles University in Prague, Czech Republic
Reinhold Weicker formerly Fujitsu Siemens, Germany
Katinka Wolter Humboldt Universität zu Berlin, Germany
Murray Carleton University, Canada

External Reviewers

Varsha Apte
Adriana Chis
Allan Clark
Om Damani
Uli Harder
Henrique Jorge Amorim Holanda
Jan Kriege
Lucian Patcas
Diego Perez
Bernhard Riedhofer
Mirco Tribastone
Itamar Viana
Samir Zeort

Sponsors

SAP AG, Germany
Deutsche Telekom, Germany
Sun Microsystems, Germany

Table of Contents

Keynotes

Scheduling for Server Farms: Approaches and Open Problems 1
Mor Harchol-Balter

SAP Standard Application Benchmarks – IT Benchmarks with a
Business Focus . 4

Ulrich Marquard and Clarissa Götz

The Relationship of Performance Models to Data . 9
Murray Woodside

Models for Software Performance Engineering

Extracting Response Times from Fluid Analysis of Performance
Models . 29

Jeremy T. Bradley, Richard Hayden, William J. Knottenbelt, and
Tamas Suto

Approximate Solution of a PEPA Model of a Key Distribution
Centre . 44

Yishi Zhao and Nigel Thomas

A Model Transformation from the Palladio Component Model to
Layered Queueing Networks . 58

Heiko Koziolek and Ralf Reussner

Model-Driven Generation of Performance Prototypes 79
Steffen Becker, Tobias Dencker, and Jens Happe

Benchmarks and Workload Characterization

SCALASCA Parallel Performance Analyses of SPEC MPI2007
Applications . 99

Zoltán Szebenyi, Brian J.N. Wylie, and Felix Wolf

Generating Probabilistic and Intensity-Varying Workload for
Web-Based Software Systems . 124

André van Hoorn, Matthias Rohr, and Wilhelm Hasselbring

Comparison of the SPEC CPU Benchmarks with 499 Other Workloads
Using Hardware Counters . 144

Lodewijk Bonebakker

X Table of Contents

Tuning Topology Generators Using Spectral Distributions 154
Hamed Haddadi, Damien Fay, Steve Uhlig, Andrew Moore,
Richard Mortier, Almerima Jamakovic, and Miguel Rio

Performance, Benchmarking and Sizing in Developing Highly Scalable
Enterprise Software . 174

Xiaoqing Cheng

Web Services and Service-Oriented Architectures

Phase-Type Approximations for Message Transmission Times in Web
Services Reliable Messaging . 191

Philipp Reinecke and Katinka Wolter

A Framework for Simulation Models of Service-Oriented
Architectures . 208

Falko Bause, Peter Buchholz, Jan Kriege, and Sebastian Vastag

Model-Driven Performability Analysis of Composite Web Services 228
Paolo Bocciarelli and Andrea D’Ambrogio

Power and Performance

Dynamic Server Allocation for Power and Performance 247
Joris Slegers, Nigel Thomas, and Isi Mitrani

Workload Characterization of the SPECpower ssj2008 Benchmark 262
Larry D. Gray, Anil Kumar, and Harry H. Li

Profiling, Monitoring and Optimization

Trace-Context Sensitive Performance Profiling for Enterprise Software
Applications . 283

Matthias Rohr, André van Hoorn, Simon Giesecke,
Jasminka Matevska, Wilhelm Hasselbring, and Sergej Alekseev

Performance Monitoring and Analysis of a Large Online Transaction
Processing System . 303

Manoj Nambiar and Hemanta Kumar Kalita

Speeding up STL Set/Map Usage in C++ Applications 314
Dibyendu Das, Madhavi Valluri, Michael Wong, and Chris Cambly

Author Index . 323

Scheduling for Server Farms:

Approaches and Open Problems

Mor Harchol-Balter

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA, 15213, USA

Server farms are ubiquitous in applications ranging from Web server farms to
high-performance supercomputing systems to call centers. The popularity of the
server farm architecture is understandable, as it allows for increased perfor-
mance, while being cost-effective and easily scalable.

Given the prevalence of server farms, it is surprising that even at this late date
so little is understood regarding their performance as compared with their single-
server counterpart, particularly with respect to scheduling. Part of the problem
is that there are at least three disjoint communities studying scheduling in server
farms, including the SIGMETRICS community, the INFORMS community, and
the SPAA/STOC/FOCS community, all of which have different approaches and
goals. One of our goals in this talk is to make researchers aware of results in
these different communities.

Our primary focus is the evaluation of different routing/dispatching policies
in server farms. The emphasis will be on intuition, so that the talk is accessible
to newcomers as well as old-timers. In surveying the newest results, we will also
present some practical open problems.

Since server farms are composed of many individual servers, each operating
under some scheduling policy, we will begin by briefly examining single-server
systems, and the effect of scheduling therein. Here we will pay particular at-
tention to the effect of heavy-tailed job size distributions witnessed in computer
system environments [1,2,3,4], in determining which scheduling policies are most
effective in practice. We will point out several counter-intuitive results, such as
the fact that scheduling policies that favor short jobs may actually help long jobs
as well [5,6,7,8,9], and the fact that scheduling results in closed system models
can be very different from those in open system models [10].

We will then move on to studying server farm models representative of those
used in supercomputing and manufacturing. These involve non-preemptive,
First-Come-First-Serve (FCFS) scheduling at the individual servers. We will see
that the mean response time of such FCFS server farms can vary by orders of
magnitude depending on the routing/dispatching policy used for assigning jobs
to servers [11]. We will question common wisdoms, like whether load should be
balanced among identical servers [12]. We will also discuss the benefits of cycle
stealing in such models [13,14,15,16], and what one can do when the size of jobs
isn’t known a priori [17].

S. Kounev, I. Gorton, and K. Sachs (Eds.): SIPEW 2008, LNCS 5119, pp. 1–3, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 M. Harchol-Balter

We next turn to server farm models that are representative of Web server
farms. Here the individual servers all employ Processor-Sharing (PS) service
order, which is a preemptive time-sharing scheduling policy. Examples of such
server farms include the Cisco Local Director product, the IBM Network Dis-
patcher, Microsoft SharePoint, and F5 Labs BIG/IP. We first show that the
desired routing/dispatching policy for minimizing mean response time in the
case of PS server farms can be very different from that for FCFS server farms.
We then focus on a particularly good policy, Join-the-Shortest-Queue, and dis-
cuss some existing approximations in the literature (e.g., [18,19,20]) and some
new approximations that apply to the case of PS server farms [21].

Finally, we turn to the question of what server farm architectures are optimal
for minimizing mean response time. Here we consider server farms where the in-
dividual servers employ Shortest-Remaining-Processing-Time (SRPT) schedul-
ing, or there is a central SRPT queue. Such models are very difficult to analyze
stochastically. The closest stochastic result is for a server farm with a central
priority queue [22]. Primary work on SRPT server farms is dominated by the
STOC/FOCS/SPAA community, which uses competitive ratios as its metric. We
will describe server farm architectures that appear to be optimal, but aren’t, and
discuss their competitive ratios, both for the case of a central queue model [23]
and an immediate-dispatch model [24]. These results motivate future research
directions for researchers in the stochastic community.

References

1. Harchol-Balter, M., Downey, A.: Exploiting process lifetime distributions for dy-
namic load balancing. ACM Transactions on Computer Systems 15(3) (1997)

2. Barford, P., Crovella, M.E.: Generating representative Web workloads for network
and server performance evaluation. In: ACM SIGMETRICS Conference, pp. 151–
160 (July 1998)

3. Shaikh, A., Rexford, J., Shin, K.G.: Load-sensitive routing of long-lived ip flows.
In: Proceedings of SIGCOMM (September 1999)

4. Schroeder, B., Harchol-Balter, M.: Evaluation of task assignment policies for super-
computing servers: The case for load unbalancing and fairness. Cluster Computing:
The journal of Networks, Software Tools, and Applications 7(2), 151–161 (2004)

5. Harchol-Balter, M., Schroeder, B., Bansal, N., Agrawal, M.: Size-based Scheduling
to Improve Web Performance. Transactions of Computer Systems 21(2), 207–233
(2003)

6. Wierman, A., Harchol-Balter, M.: Classifying Scheduling Policies with respect to
Unfairness in an M/GI/1. In: Proceedings of the ACM Sigmetrics Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS), pp. 238–249
(June 2003)

7. Brown, P.: Comparing FB and PS Scheduling Policies. In: Eighth Workkshop on
Mathematical Performance Modeling and Analysis (MAMA 2006) (June 2006)

8. Schroeder, B., Harchol-Balter, M.: Web servers under overload: How scheduling
can help. ACMTOIT 6(1) (February 2006)

9. Yang, C.W., Wierman, A., Shakkottai, S., Harchol-Balter, M.: Tail asymptotics
for policies favoring short jobs in a many-flows regime. In: ACM Sigmetrics 2006
Conference on Measurement and Modeling of Computer Systems (2006)

Scheduling for Server Farms: Approaches and Open Problems 3

10. Schroeder, B., Wierman, A., Harchol-Balter, M.: Closed versus Open System Mod-
els: a Cautionary Tale. In: Proceedings of Networked Systems Design and Imple-
mentation (NSDI 2006), pp. 239–252 (May 2006)

11. Harchol-Balter, M., Crovella, M., Murta, C.: On Choosing a Task Assignment
Policy for a Distributed Server System. IEEE Journal of Parallel and Distributed
Computing 59, 204–228 (1999)

12. Harchol-Balter, M., Vesilo, R.: To Balance or Unbalance Load in Size-Interval Task
Allocation (in submission, 2008)

13. Osogami, T., Harchol-Balter, M., Scheller-Wolf, A.: Analysis of cycle stealing with
switching times and thresholds. Performance Evaluation 61(4), 369–374 (2005)

14. Fayole, G., Iasnogorodski, R.: Two coupled processors: the reduction to a reimann-
hilbert problem. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebi-
ete 47, 325–351 (1979)

15. Foley, R., McDonald, D.: Exact asymptotics of a queueing network with a cross-
trained server. In: Proceedings of INFORMS Annual Meeting (2003)

16. Borst, S., Boxma, O., van Uitert, M.: The asymptotic workload behavior of two
coupled queues. Queueing Systems: Theory and Applications 43, 81–102 (2003)

17. Harchol-Balter, M.: Task Assignment with Unknown Duration. Journal of the
ACM 49(2), 260–288 (2002)

18. Nelson, R.D., Philips, T.K.: An Approximation to the Response Time for Shortest
Queue Routing. In: ACM SIGMETRICS Conference, pp. 181–189 (May 1989)

19. Nelson, R.D., Philips, T.K.: An Approximation for the Mean Response Time for
Shortest Queue Routing with General Interarrival and Service Times. Performance
Evaluation 17, 123–139 (1993)

20. Wessels, J., Adan, I., Zijm, W.: Analysis of the asymmetric shortest queue problem.
Queueing Systems: Theory and Applications 8, 1–58 (1991)

21. Gupta, V., Harchol-Balter, M., Sigman, K., Whitt, W.: Analysis of join-the-
shortest-queue routing for web server farms. In: PERFORMANCE 2007 Confer-
ence. IFIP WG 7.3 International Symposium on Computer Modeling, Measurement
and Evaluation, Cologne, Germany (October 2007)

22. Harchol-Balter, M., Osogami, T., Scheller-Wolf, A., Wierman, A.: Multi-server
queueing systems with multiple priority classes. Queueing Systems: Theory and
Applications 51(3-4), 331–360 (2005)

23. Leonardi, S., Raz, D.: Approximating total flow time on parallel machines. In:
ACM Symposium on Theory of Computing, pp. 110–119 (1997)

24. Avrahami, N., Azar, Y.: Minimizing total flow time and total completion time with
immediate dispatching. In: ACM Symposium on Parallel Algorithms and Archi-
tectures (SPAA 1997), pp. 11–18 (2003)

SAP Standard Application Benchmarks -

IT Benchmarks with a Business Focus

Ulrich Marquard and Clarissa Götz

Performance, Data Management & Scalability, SAP AG
{ulrich.marquard, clarissa.goetz}@sap.com

Abstract. SAP is the world’s leading provider of business software. It
delivers a comprehensive range of software products and services to its
customers: Companies from all types of industries, ranging from small
businesses to large, multinational enterprises engaged in global markets.
The hardware and software requirements of these businesses are as di-
verse as the companies themselves, but for most customers they boil
down to two key performance indicators: Throughput, of importance
mainly for background processing, for example overnight payroll calcu-
lations, and response time, of relevance to end users actively engaged
on the system. For over 15 years SAP and its hardware and technology
partners have developed and used benchmarks to test the performance
and scalability of both SAP solutions and the hardware they run on.
The SAP Standard Application Benchmarks, first certified as such in
1995, help SAP and its partners prove that their software and hardware
components scale up (and down) with their customers’ business needs,
and support customers in configuring SAP Business Solutions for their
productive systems.

1 The Acid Tests for Business Technology: Reliability,
Predictability and Scalability

Since the early 1990s, SAP has been running load tests in cooperation with its
hardware and technology partners to look into the performance behavior across
applications, releases, and hardware platforms. Very quickly it became evident
that these load tests had to be standardized to ensure reliable, reproducible and
high-quality results. The concept of the SAP Standard Application Benchmarks
was developed, and a standard process for running and certifying these bench-
marks deployed. This framework included clear process definitions, criteria for
permissible system configuration and tuning, a standardized environment and a
set of benchmark tools to enable the benchmarks to be implemented on different
platforms. Also, an independent governing body was established to oversee the
certification of the benchmarks and their continued development in response to
evolving market needs.

But top performance or performance under extreme load is not all that mat-
ters to SAP’s customers. Another mission critical criterion is that the behavior

S. Kounev, I. Gorton, and K. Sachs (Eds.): SIPEW 2008, LNCS 5119, pp. 4–8, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

SAP Standard Application Benchmarks 5

of a business solution remains predictable and reliable as the business volume
increases and decreases in the course of a business day, week, month, etc. Scala-
bility is the key word: only if a system is scalable can it be sized appropriately.
In sizing, performance results established for a certain system load are used as
the basis for extrapolating or interpolating hardware resource requirements for
higher or lower business volumes. Thus, the most important reasons why SAP
Standard Application Benchmarks are extensively used by SAP, partners and
customers are:

– Performance and Scalability - The SAP Standard Application Benchmarks
help both SAP and its hardware and technology partners demonstrate the
performance, scalability and manageability of even extraordinarily large in-
stallations. SAP and its partners have a joint commitment to performance-
optimize their technologies and to pass the resulting performance gains on to
their customers’ businesses, with impressive results: There are configurations
available on the market today that would enable an online retail company
to turn over $170 million in only one hour’s worth of sales order processing,
at an average sales price of $10 per sales order item.

– Sizing - By analyzing the benchmarking results that are published at the
SAP Benchmarking Web site [4], customers are able to anticipate how a
particular hardware and software configuration behaves under high load.
Since the SAP Standard Application Benchmarks are also the basis for SAP’s
sizing methodology1, they help SAP customers define a system configuration
that fits their specific business needs.

An additional important aspect of scalability inherent in the SAP Standard
Application Benchmarks is that they create a scalable load. As a result, small
servers or even laptop computers can be tested with the same benchmark that
is used to test very large systems consisting of dozens of servers and hundreds
of CPUs.

Moreover, the load that is generated during the run of an SAP Standard Ap-
plication Benchmark can be predicted with high accuracy, and this is of great
advantage for the certification process. A typical check during benchmark certi-
fication would be, for example, to validate whether the statistics show that the
number of database inserts for a particular table are as expected. Reproducible
load leads to reproducible results and this consistency, in turn, gives a good in-
dication of the validity and reliability of the benchmarking results. Benchmarks
executed on basically the same hardware thus tend to generate very similar re-
sults. Tests run internally at SAP with series of benchmarks have shown that the
measured accuracy is roughly 1%, which means that performance optimizations
within the range of 1% can be measured and validated.

1 SAP provides a well-defined sizing methodology and an online sizing tool, the Quick
Sizer, which help customers in their sizing processes. For more information see [1].

6 U. Marquard and C. Götz

2 Methodology and Principles Behind the SAP Standard
Application Benchmarks

The SAP Standard Application Benchmarks differ from other IT benchmarks:
rather than testing for technical throughput figures such as “transactions / hour”
they combine the measurement of system performance with a business applica-
tion that is productively used in customer implementations. By executing actual
business processes, they render application-specific and business-relevant perfor-
mance indicators, for example, the number of users that can work simultaneously
in the system, user interactions per hour, or business throughput figures such as
fully processed order line items per hour.

The architecture of the SAP Standard Application Benchmarks is designed
in a way that makes it transparent for the system under test as to whether the
generated load originates from simulated or real users. This keeps the benchmark
results free from distorting artifacts and helps achieve realistic, business-relevant
results. For example, all monitoring tools that are activated in productive sys-
tems are also enabled for the benchmark, and the benchmark driver is located on
an external system, thus producing no additional load or making any influence
on load balancing.

Defined in business application terms (for example, “fully processed order line
items per hour”), the measured throughput is then mapped onto the resource
consumption of the most prominent hardware components (incl. CPU and mem-
ory) and the result expressed in a hardware-independent unit of measurement:
the SAP Application Performance Standard (SAPS). This unit is derived from
the SAP Sales and Distribution (SD) Benchmark, SAP’s most important and
frequently used benchmark, and is defined as:

2,000 fully processed order line items per hour = 100 SAPS

Translated back into technical terms this equals 6000 dialog steps/screen changes
or 2400 SAP transactions. Since all benchmark scripts, including that of the SAP
SD Benchmark, have remained virtually unchanged over the years, it is possible
to track the performance progress of IT technology: SAPS figures have increased
50 fold between 1996 and 2006 (from about 600 to 30000), roughly mirroring the
stipulations set forth in Moore’s Law2 (see Figure 1).

The stability of benchmark scripts also enables a comparative evaluation
across different platform versions, software releases, or architectures. SAP uses
these scripts for quality assurance within its own development community, e.g. to
monitor resource consumption during development of a new release, to analyze
different system configurations and parameter settings, and to verify hardware
sizing. The hardware and technology partners use the SAP Standard Applica-
tion Benchmarks in their QA efforts, as well, for example, to run tests for new
servers.

2 Moore initially stipulated a doubling of transistor counts every year [3], but later
redefined the period to two years.

SAP Standard Application Benchmarks 7

Number of SAPS, two-tier configuration

40650

65700

105820

39080

20700
855071333418

177950

100700

15080

152530

117520

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Jan 95 Jan 96 Jan 97 Jan 98 Jan 99 Jan 00 Jan 01 Jan 02 Jan 03 Jan 04 Jan 05 Jan 06 Jan 07 Jan 08

Fig. 1. Development of SAPS achieved for 2-tier configurations (i.e. application server
and database server co-located on one system); for details see [4]

3 Shaping the SAP Standard Application Benchmarks

The stability, integrity and agility of the SAP Standard Application Benchmarks
are no coincidence. An expert set of people are the motor behind the benchmarks,
most notably the SAP Benchmark Council. This independent body, consisting of
members from SAP and its hardware and technology partners, governs the SAP
Standard Application Benchmarks and all related development, certification and
publication processes.

The SAP Benchmark Council started in March 1993 as a relatively informal
meeting of representatives from SAP and its hardware and technology partners,
and was officially inaugurated in 1995. The council meets once per month; its
responsibilities include monitoring all activities regarding benchmarking, defin-
ing benchmark rules and processes and ensuring the strict adherence to them,
as well as controlling the content and publication of the benchmarks. SAP certi-
fies all benchmarks submitted by the partners on behalf of the SAP Benchmark
Council and publishes the results at the SAP Benchmarking Web site [4].

To meet the challenges presented by rapid technological change and to rec-
oncile the potentially differing opinions of this multi-vendor assembly, the SAP
Benchmark Council uses the principle of spin-off work groups to investigate new
topics, discuss the challenges they present to benchmarking, and come up with
solutions that benefit customers and can be adopted by all parties involved.
These work groups are made up of experts from interested partners and meet on
an as-needed basis to create proposals on how a particular requirement can be

8 U. Marquard and C. Götz

integrated into the benchmarking process. Virtualization, multi-core computing
and Green IT are only a few of the most recent topics on the agenda.

The principles on which the SAP Benchmark Council is founded are both sim-
ple and effective: All members have the same rights and responsibilities. This,
paired with a common understanding and a selfimposed restraint, ensures that
no partner can push through a personal agenda unilaterally. In this way, the
SAP Benchmark Council remains flexible and agile, while at the same time en-
suring continuity and reliability for customers, partners, and SAP. Fair play is
also guaranteed by the fact that each partner can obtain a benchmark submis-
sion from another partner for review. This right to disclosure and each partners
readiness to hand over this potentially sensitive data to other partners discour-
ages illicit tuning and ensures that the benchmarking processes and results are
above-board (for an overview of manipulation detection methods see [2]).

Combined, these principles and methods help maintain the high level of cred-
ibility and visibility of the SAP Standard Application Benchmarks in the indus-
try, and all involved - SAP, partners and customers - have a vested interest in
keeping it that way.

4 Conclusion

The SAP Standard Application Benchmarks have established themselves as some
of the most credible and popular application benchmarks in the industry, not
least of all because they combine the measurement of system performance with
business applications as they are productively used by customers. A standard
process and an independent governing body for the definition, execution, sub-
mission and certification of these benchmarks - the SAP Benchmark Council -
ensure that the benchmarks are portable across all major platforms and operat-
ing systems, and that they generate reproducible and publishable results whose
integrity is beyond doubt.

References

1. Janssen, S., Marquard, U.: Sizing SAP Systems. Galileo Press, Bonn, Germany
(2007)

2. Klein, M.: Manipulation Detection of Benchmark Results for Mobile Devices.
Diploma thesis, Institut für Telematik (ITM), Telecooperation Office (TecO), Uni-
versität Karlsruhe (TH), Germany (2008)

3. Moore, G.E.: Cramming more components onto integrated circuits. Electronics Mag-
azine 38(8), 114–117 (1965)

4. SAP Standard Application Benchmarks, http://www.sap.com/benchmark

http://www.sap.com/benchmark

S. Kounev, I. Gorton, and K. Sachs (Eds.): SIPEW 2008, LNCS 5119, pp. 9–28, 2008.
© Springer-Verlag Berlin Heidelberg 2008

The Relationship of Performance Models to Data

Murray Woodside

Carleton University, Ottawa, Canada
cmw@sce.carleton.ca

Abstract. Performance engineering of software could benefit from a closer in-
tegration of the use of performance models, and the use of measured data. Mod-
els can contribute to early warning of problems, exploration of solutions, and
scalability evaluation, and when they are fitted to data they can summarize the
data as a special powerful form of fitted function. Present industrial practice vir-
tually ignores models, because of the effort to create them, and concern about
how well they fit the system when it is implemented. The first concern is being
met by automated generation from software specifications. The second concern
can be met by fitting the models to data as it becomes available. This will adapt
the model to the new situation and validate it, in a single step. The present paper
summarizes the fitting process, using standard tools of nonlinear regression
analysis, and shows it in action on examples of queueing and extended queue-
ing models. The examples are a background for a discussion about the relation-
ship between the models, and measurement data.

1 Motivation

Software performance modeling and measurement are insufficiently integrated.
Roughly speaking we may say that measurement is used to test software and to iden-
tify performance problems, often in laboratory conditions; modeling is used for prior
analysis of planned systems (when there are no measurements available), for capacity
and scalability analysis (exploiting the capability to model large deployments), and
for insight into deep problems. There are a number of exceptions; one is in tracking
performance models for adaptation of time-varying systems (e.g. [19]).

In [20] the potential benefits of more strongly unifying these two aspects of per-
formance analysis were identified as

• end-to-end performance process unifying prior estimates with testing/debugging
and capacity modeling

• better quality models calibrated frequently and routinely from data, using a strong
and maintained connection between the model and the system,

• more efficient measurement, by using models to plan the measurement trials.

The weak link here seems to be the calibration of models from data. Long experience
in creating models teaches how difficult it can be to determine their parameters em-
pirically. Some critical kinds of data are often difficult to obtain, notably the CPU

10 M. Woodside

demands of particular operations. However, recent work on tracking model parameter
values with a Kalman Filter estimator has indicated how data-gathering can be eased
by use of a suitable estimator [20]. That work was for tracking parameters which are
changing. This paper considers a different problem, modeling a system which is not
changing, but which is operated under different workloads and configurations. It de-
scribes a simple framework for estimating a model by nonlinear regression, and some
properties of the resulting model (including how it differs from one made up from
expert knowledge alone). Standard statistical concepts provide a bridge between the
practice of measurement and the practice of modeling.

The reduction of difficulty comes from indirect estimation of model parameters,
using only measurements at the interfaces of the system. A prime example is the diffi-
culty of estimating the CPU demand of a particular operation. Direct measurement
requires source-code instrumentation (as in profiling, for instance) but a model-based
estimator only requires accessible performance measures such as operation response
times, and then estimates the CPU demand to fit the measured values.

Recent efforts to calibrate CPU demands from accessible measures include [10]
and [3], in which individual operations were measured in separate benchmark ex-
periments, and the patent application [16], which applies an optimization technique to
fit a queueing model to data. The patent motivation includes the rationale:

“There should be a simple method to estimate the parameters of the model,
given high-level system measurements obtained by external monitors, rather
than adding instrumentation with detailed level measurement probes to ap-
plications.” [16]

The present paper combines ideas from statistics textbooks and the performance
modeling literature, and shows how they might be able to unify the practice of per-
formance engineering of software. Its methods can be applied to any performance
modeling formalism. Relevant background for modeling is given by Smith and Wil-
liams [14], Balsamo et al [1], and in the proceedings of the WOSP conference [21].
Representative material on measurement is provided in the Paradyn papers by Miller
and co-workers (e.g. [11]), and by the online tutorial [2].

2 Software Performance Analysis

2.1 A Unified Process

The vision of a unified process, which this paper intends to support, is sketched in
Figure 1 reproduced from [20]. Performance predictions and data feed a common data
repository with a united definition of the semantics of predicted, measured and re-
quired values, defined during requirements analysis. Performance values are derived
early and evolve with the design and the product. Performance knowledge can be lev-
eraged, rather than being abandoned soon after it is produced. The awkward fact that
performance is a moving target and one never measures or models the same system

 The Relationship of Performance Models to Data 11

improves_estimates

<<WorkProduct>>
Performance-related

Conclusions

<<Document>>
Design

Specification

<<Activity>>
Performance

Model Building

<<WorkProduct>>
Performace

Model

<<Activity>>
Model Solving

<<WorkProduct>>
Performance Test

Results

<<Document>>
Scenarios

<<WorkProduct>>
Performance

Model Results

<<Process>>
Develop & Deploy

System

<<Activity>>
Performance
Test Design

<<Activity>>
Monitor Live

 System

<<Activity>>
Run Performance

Tests

<<WorkProduct>>
Monitoring

Results

<<Activity>>
Interpretation of Performance

Results

optimizes

<<Document>>
OperationalProfile

<<Document>>
PerfRequirements

<<WorkProduct>>
ParameterEstimate

<<Guidance>>
Expertise

compares

guides

diagnosis

validates

<<Activity>>
Parameter
Estimation

Fig. 1. A proposed landscape for a unified SPE process, from [20]

twice, is covered by versioning the data in synchrony with versions of the design, the
run-time configuration and the code.

The estimators described in this paper provide the links shown by the very heavy
arrows, by which parameter values are calibrated from data from a test or an opera-
tional system. These links maintain the parameters of the model as the software is
completed and make the model available for planning deployments and new versions
of the system.

The estimators form a bridge between what we will term a data-centric view of
performance, on the right-hand side of Figure 1, and a model-centric view, on the left.

2.2 Data-Centric View

An extreme data-centric view is that only measurement data is significant, because
only the data can capture the full complexity and interactions of the system. Meas-
urements are carried out in tests or trials, in which a controlled and instrumented con-
figuration is operated under a specified workload, and as much data is recorded as
possible, including performance measurements at system interfaces, and measures on
internal operations.

12 M. Woodside

Instrumented and Controlled
System Under Measurement

Configuration
 Variables

ut

Performance
Measures
 zt

z

u

Measurement error band

Fitted curve

Prediction error band

(a) Trial Number t

(b) Results of Fitting a Model

Data Output
t ut zt
1
2
..

Fig. 2. Inputs and outputs of a system performance measurement trial

A high-level view of system measurement is sketched in Figure 2(a), showing the
inputs and outputs of a single measurement test or trial, identified as trial number t:

• ut, a vector of controlled parameters whose values can be assigned in a measure-
ment experiment or a proposed configuration. These are system parameters that
could be significant for performance. They might include the number of processor
cores, the size of a thread pool, cache or buffer pool, the size of files to be trans-
ferred or of database transactions. Qualitative attributes of a configuration, such as
the use of a particular middleware or component, or the presence/absence of some
feature, can be included through categorical variables in u, but will not be consid-
ered here.

• zt, a vector of measured values of any performance quantities of interest. These can
be average values, percentiles of delay distributions or any other well-defined
measure. We assume the system is stationary, and for any value of the controlled
parameters the measures have defined and repeatable values apart from sampling
error due to a finite measurement period.

A series of measurement trials gives a tabulated relationship between the controlled
variables u and the measured responses z, which for one component of each can be plot-
ted as shown in Figure 2(b). The measurement errors are indicated as a shaded band.

Many kinds of measurement systems have been used. We can categorize types of
data into four groups, in increasing order of difficulty to obtain it:

 The Relationship of Performance Models to Data 13

1. data gathered by the operating system, such as processor and process utiliza-
tions, and I/O counts

2. data collected at system interfaces by timers and counters,
3. profiling data on CPU usage by operation, down to quite fine grained methods,

using embedded source code instrumentation (in for instance Purify [4]) or
stack sampling (as in gprof).

4. Logical resource usage, such as critical section monitoring in Paradyn [12].

In much of the performance analysis of commercial software it is not practical to
use the more sophisticated tools in groups 3 and 4, because of time and cost, and be-
cause source code is not available for third-party components. And those tools often
distort the system by introducing significant fine-grained costs. Field measurements
are often restricted to groups 1 and 2, and even in the lab there is an advantage in only
requiring the simpler forms of instrumentation.

In measurements to support the model fitting described below, the performance
measures are delays measured at component and messaging interfaces, and utiliza-
tions of processors and processes. If a model is fitted to the data, shown as a solid
line, its predictions also have a prediction error indicated by the darker shaded band.
This band is narrower than the measurement error band, because the fitting process
smooths out the errors of individual measurements.

2.3 Model-Centric View

The model-centric view seeks an abstraction that captures the essence of the system
performance in its simplest form. Performance models often do not start from data.
For example, to provide insight into performance issues during the system design
phase, performance models can be created based entirely on the design and on expert
judgment [14]. A given model has a structure, based on the elements of the design,
and parameters which describe what the system will do. (The particular modeling
method to be used is not our focus here, but is surveyed in [1].) We should regard the
model calculation as a vector function h(x, u), as illustrated in Figure 3:

u = configuration parameters as before
x = parameter values in the model, which must be obtained by some process
y = vector of predicted performance measures = h(x, u)

Performance Model

y = h(x, u)
(x = parameters)

 Configuration
 Variables

ut

Calculated Performance
Measures
 yt

Fig. 3. Performance model as a function

Despite the difficulties in obtaining parameter values, Smith and Williams (who
have developed procedures for gathering structure and parameters for early models)
show that the results have many practical uses in practice [14]. Their approach

14 M. Woodside

includes the important notion of expressing a parameter as an interval expressing ex-
pert judgment as a range of values parameter value in the range [min, most likely
value, max].

Using these interval values we can show the model predictions as a plot with a cen-
tral value and an uncertainty band, for parameters within these intervals, similar to the
darker band in Figure 2(b).

It may be confidently stated that good insight into structure is often available, but
the parameter values are often problematic. The main barrier to usability of these
early models lies in lack of confidence in the parameter values.

The Bridge: Estimation
To fit a model to experimental data it is common to estimate its parameters directly,
by measuring the property represented by the parameter. For CPU demand parameters
(for instance) this often requires recording the CPU associated with each operation, as
in profiling. Other kinds of parameters include the relative frequency of different op-
eration invocations or messages, and the sizes of data objects.

Here we consider a more general version of estimation, which includes direct esti-
mation as a special case. We assume a model structure is determined, within the cho-
sen formalism, from expert knowledge or system design documents. To this structure
we attach three kinds of parameters:

• assumed parameters, whose values are known and do not vary during the estima-
tion process or in planned deployments. We will not consider these further here;
they are lumped in with the structure.

• controlled parameter vector u, as above, taking value ut in trial t,
• estimated parameter vector x, assumed to be constant.

and performance measures of interest, given by

• vector y for the model and
• vector zt for measurement trial t, also as above.

The result of a series of trials is a pair of sequences zt and ut for t = 1,...Tmax.
A standard basis for estimation, which we will use, is to maximize the likelihood of

the model. We assume that the measurements z are determined by an unknown func-
tion h(x, u) (to be found) plus a measurement error vector v:

zt = h(x, ut) + vt

Assuming that vector ut is independent over time with a joint normal distribution
with mean zero and covariance matrix R, we obtain the maximum-likelihood estimate
as the vector x that minimizes E(x):

x̂ = arg min E(x), E(x) = Σt (yt − zt)
TR-1(yt − zt)

If we only know R to within a constant, the constant can also be estimated. If com-

ponents of v are independent with the same variance, R is proportional to I and x̂ is
the familiar least squares estimator. Estimates made with I in place of R (that is, plain
least-squares estimates) are unbiased but less accurate.

 The Relationship of Performance Models to Data 15

This is a standard optimization problem, which can be solved in many ways. Many
of these exploit the special structure of E(x), which is a quadratic form. A standard
approach, treated in statistics texts such as [8], is Gauss-Newton iteration which gives
an approximate solution through a series of linear regressions. Gauss-Newton itera-
tion was used to analyze the example given below. Since it is not a widely-known
procedure, the adaptation of Gauss-Newton iteration to performance models is given
in detail in the Appendix.

If xt is not assumed to be constant, then it can be modeled as a function of time
(provided the trials are regularly spaced in time) and estimated with an optimal filter
such as the Kalman filter; this case is not considered further here.

2.4 Inference: Knowledge and Uncertainty

A major impediment to the use of any kind of model (not just a performance model)
is the feeling, in a potential user, that one should not trust the predictions if one does
not understand the limitations of the model. A substantial part of these limitations is,
the prediction uncertainty due to inaccurate parameter values, and these can be esti-
mated as confidence intervals. This informs the potential user of the accuracy, which
may be different for different measures coming from the model, and poor accuracy
may identify the need for more information, depending on the decisions to be made. It
also places the predictions into a familiar framework of statistical predictions and
statistical quality control, which industrial decision makers can deal with. For exam-
ple, if one can give the probability of missing a performance target by different
amounts, it enriches the consideration of risk.

Within these confidence bounds, the model becomes a representation of the data.
Using the approximate maximum likelihood and non-linear regression framework

considered here, estimation errors and prediction errors are effectively assumed to be
normally distributed. Normality is a reasonable assumption for measurement errors
which are averages or sums, due to the central limit theorem. However the nonlinearity
of the model reduces the validity of the assumption for estimation and prediction errors.

The most basic and familiar representation of uncertainty takes the form of confi-
dence intervals, which are found as part of the standard inference results for regression:

• confidence intervals for the parameters x = x̂ ± CIx

• confidence intervals for the predictions y = h(x̂ ,u) ± CIy

where the vector CIx is the confidence interval half-widths for x. As we will see, pa-
rameters that make little difference to the prediction tend to be estimated with large
confidence limits.

3 Illustration: Queueing Model

The small queueing network model shown in Figure 4 will be considered as the first
example. It represents a small Web server with its disk (node 2) and a separate node
for CGI application service (node 3). A response includes all the work done between
visits to the “Users” node in the Figure, which represents the operation in which a

16 M. Woodside

user responds to one system output and generates the next request to the system.
Users have a characteristic “think” time for this operation, which will be set to zero
here. Service times are assumed to be exponential. We consider one controllable pa-
rameter, three demand parameters to be estimated, and four measures.

0:Users

3: CGI

2: Disk

1: Webserver

Fig. 4. A small queueing model

Then the queueing model has four parameters:

u = N = the number of active jobs, assumed to be constant (so this is a “closed”
model), with default value 4,

x = [x(1), x(2), x(3)] = the total average demands for service by nodes 1, 2 and 3,
with actual values [2, 3, 4] sec/response.

y = [y(1), y(2), y(3), y(4)] = [T(1), T(2), T(3), f], where T(i) is the mean response time
of node i, totalled over a user response, and f is the throughput of user requests.

The model is assumed to satisfy the separability conditions for product form queueing
networks, which means that it can be solved by Mean Value Analysis (MVA) [5].

The data for illustrating the use of nonlinear regression were obtained by simulat-
ing the same queueing network for different durations, and with different numbers of
users, as shown in Figure 5. Clearly this oversimplifies the fitting problem, since the
performance model ought to fit to some degree. However it serves to demonstrate that
the method can find the right model, and it illustrates the important issue of accuracy
of the fitted parameters.

Simulated
Queueing
Network

(parameters x)

Configuration
 Variables

ut

Performance
Measures
 zt

Data Output
t ut zt
1
2
..

Model
Fitting
Process

Fitted
Parameters

 x̂

Fig. 5. Configuration of the Computations for the Illustration

 The Relationship of Performance Models to Data 17

To simulate measured data, the system was simulated for 10 trials, each of duration
S time units, with from 1 to 10 users; node 3 approaches saturation at a population of
about 8. S was varied from 1000 time units to 100000, and the total simulation time
was varied from 104 to 107 time units. The throughput ranged from about 0.1/time unit
with one user, to 0.25 with 10 users, so a trial of length 1000 includes between 100
and 250 responses. In the estimation, analytic derivatives were computed for the H
matrix by extending the MVA algorithm as described in [19].

Two sets of experiments were performed with zero “think time” at node 0, and
with a mean think time of 10 units. Table 1 shows the demand parameter estimates
and their confidence intervals. Since the random think time introduces additional
variation in the data, it is not surprising that most confidence intervals are a little
wider for the second set.

Table 1. Queue Model Parameter Estimates and their Confidence Intervals

Expt/Trials/
Length of Trial

Think
Z

x̂ (1) ± CIx(1)

x̂ (2) ± CIx(2) x̂ (3) ± CIx(3)

A1/10/1000000 0 2.003 0.0109 3.005 0.0108 4.005 0.0087
A2/10/100000 0 1.992 0.0223 2.989 0.0222 4.011 0.0178
A3/100/10000 0 2.011 0.039 3.077 0.038 4.044 0.031
A4/10/10000 0 2.018 0.018 2.994 0.018 4.004 0.014
A5/10/1000 0 2.182 0.204 2.967 0.217 3.848 0.181
B1/10/1000000 10 2.005 0.0089 2.994 0.0097 4.009 0.0081
B2/10/100000 10 2.003 0.0215 3.010 0.0234 4.036 0.0194
B3/100/10000 10 2.001 0.025 2.999 0.027 3.941 0.023
B4/10/10000 10 1.939 0.072 2.944 0.078 3.925 0.065
B5/10/1000 10 1.854 0.221 2.798 0.247 3.980 0.188

From the results in Table 1, we can see that:
• The confidence intervals are tighter for the largest demand values (server 3), which

corresponds to the most saturated resources. This is very natural, since the regres-
sion is controlled by the sensitivity of the performance measures to the parameters.
This is shown by the sensitivity matrix H, which at convergence (in experiment
B5, but the others are similar) is

H = 2.9219 -0.3164 -1.8522
 -0.1388 5.6991 -3.5126

 -0.4019 -1.7367 10.3132
 -0.0044 -0.0119 -0.0474

The columns represent the sensitivity of the four measures (three node response
times and one throughput) to the three node CPU demands. The bold values show
that each server response time is most sensitive to its own service time, but the
other values show larger magnitudes in column 3 than the other columns. In par-
ticular row 4 showing sensitivity of overall system performance, has its largest
element in column 3.

• Although server 2 is more heavily utilized than server 1, (and its demand shows
greater sensitivity in the H matrix) the confidence intervals for their demands are
similar, since neither is determining for performance.

18 M. Woodside

• Longer measurement trials give more accurate estimates, which is not surprising
since the measurement error is less. However Table 1 does not provide very consis-
tent advice on how much better the accuracy will be. Estimates by averaging im-
prove their accuracy in the ratio of the square root of the estimation time, but these
estimates improve more slowly (a factor of 10 more simulation time gives only a
factor of 2 or less reduction in the confidence interval width).

• It is interesting that dividing the total trial time into 100 shorter trials gave worse
confidence intervals, than 10 trials each ten times as long. Possibly end effects in
the simulations (start-up of the queues) account for this.

The response-time predictions of the model for populations from 1 to 20 are plotted in
Figure 6, for Expt. 5 with the shortest simulations, including 95% confidence inter-
vals. We see an increasing error band because the parameter errors are amplified at
larger populations, Essentially they reflect the percentage error in the demand pa-
rameters, particularly the dominant one.

Fig. 6. Output predictions of the queue model found for Case B5, with 95% confidence intervals

3.1 Structure

A recurring question is, have we captured all the structure of the system? In a classi-
cal queueing model, this means, is there another queueing resource that is not pro-
vided for in the model. Given the very straighforward structure of queueing models,
one can easily add a node and fit its demand. The data used for the tests in this section
was generated by a simulation of a three-queue model. If we attempt to fit a fourth
queue, we can test to see if the fit is significantly better. Table 2 shows results for
fitting four service demands to the same data as used in experiments B1 (long meas-
urement runs) and B5 (short runs, giving larger measurement errors). The sums of
squares criterion E(Ci) is given for these results to compare to the value E(Bi) for a
three-queue model. We can see there is no reduction.

 The Relationship of Performance Models to Data 19

Table 2. Results for fitting models with four queues when the system has only three

Expt x̂ (1)± CIx(1) x̂ (2)± CIx(2) x̂ (3)± CIx(3) x̂ (4)± CIx(4) E
for Ci

E
for Bi

C1(as B1) 2.005 0.009 2.994 0.010 4.010 0.009 0.005 0.201 2.577 2.579
C5(as B5) 1.858 0.231 2.808 0.263 4.006 0.203 0.470 4.127 1482 1481

It is easy to see that the fourth queue in this model is not useful or significant to the
fit. One giveaway (that the fourth queue is not very significant) is that the confidence
interval half-width is much larger than the fitted demand. When the data is very accu-
rate, in C1, the fitted value is also near zero, but when it is less accurate as in C5, the
fitted value is quite a lot more than zero. Some delay due to servers 1 and 2 is evi-
dently being accounted for in this case by the extra ghost server.

The significance is tested using the sums of squared errors E. The test statistics are:

For C1: [(E(B1) - E(C1))/1]/[E(B1)/36] = [0.001]/[2.579/36] = 0.014
For C5: [(E(B5) - E(C5))/1]/[E(B5)/36] = [-1]/[1481/36] = -0.024

The test statistic cannot be negative in linear regression, where the model is a sum
of terms each with a coefficient. However this is a nonlinear regression in which the
model is not a sum of terms, and we are comparing the results of two independent
approximate minimizations. Even so the model with additional parameters should
give a smaller E; the fact that we obtained a larger sum of squares must be due to ap-
proximation error. The critical value at the 95% level is F(1,36,0.95) = 4.14. Case C1
is two orders of magnitude from significance, and case C2 also does not indicate
significance.

4 Illustration with a Layered Model

Real software systems have a lot more structure to their resource use, than a classical
queueing network model. The layered queueing network (LQN) formalism [5][6][12]
captures the nested use of resources, including logical resources such as process
threads, buffers, and locks, and does so in a formalism that represents large-scale as-
pects of the software architecture, such as concurrent processes.

Figure 7 shows an example LQN representing a web application. The bold rectan-
gles represent concurrent processes (called tasks in LQN terminology) with the at-
tached rectangles representing their externally invoked operations (called entries), and
associated to oval symbols representing their host processors. Entries are labeled with
their CPU demand, in suitable time units, and in the figure the entry labels show both
a symbolic name prefixed by $, and a value. The name identifies a parameter which
was estimated, and the value is the value used in the simulation to generate the data.
We can later judge the estimation process by how close it comes to the original value.
Entries call or request service from other entries, indicated by arrows; the solid ar-
rowheads here indicate that the caller waits for the response (blocking calls). An entry
may have a second phase or delayed operation, after it sends a response to its re-
quester, so here the entry appOp shows host demands and database requests for two
phases.

20 M. Woodside

 users
[think=5]

Directory
{1}

dirServ
[$dirD=0.1]DataBase

{1}
dbOp

[$dbD=0.1]

Application
{$mApp=1}

appOp
[$apDph1=0.2,
$apDph2=0.2]]

WebServer
{$wsThreads=3}

webServ
[$wsD=0.4]

Users
{$nusers=1:50}

UserP
{inf}

WSP
{2}

UserP
{1}

AppP
{1}

(1)

(0.7)

(0.1)
(1.5,0.7)

Fig. 7. Layered Queueing model used for the illustration. The parameters with $name were
estimated; the numbers show the values used in the simulation.

The servers in an LQN include both the tasks and the processors. Processors can
have a relative rate (not shown) and a multiplicity, in curly brackets (to represent mul-
ticore or symmetric multiprocessors), and tasks can also have a multiplicity (shown in
curly brackets) representing the size of a finite thread pool. The Users are a special
class of task, that does not serve any requests, and represent the customers to the sys-
tem. An infinite processor represents one processor per task.

This model was simulated to generate data for 10 trials, using numbers of users
from 5 to 50 in steps of 10. For estimation of the seven parameters, the configuration
vector u again consisted of the number of users. Estimation was by Gauss-Newton
iteration of the nonlinear regression problem, as described in theAppendix. The de-
rivatives needed for the H matrix were computed by finite differences, after re-
running the analytic solver for a slightly (1%) perturbed value of the parameter, for
parameters with real values. Parameters with integer values ($wsThreads and $mApp)
were perturbed by 1 unit.

Table 3 shows the results for the parameters with the half confidence interval below
each result, for two experiments. In experiment D1 there were 10 trials of duration 1000
units, in experiment D2 there were 10 trials of 100000 units. Under the name of each
estimated variable is given, in brackets, the value of the variable in the simulation. This
is the “correct” value for the variable, and the estimate should be close to this value.

 The Relationship of Performance Models to Data 21

Table 3. Results for fitting seven parameters of the LQN in Fig 6 to data generated by simulation

Expt./
Trial length

$dirD

$WSD

$appDph1 $appDph2 $dbD $mApp $wsThreads E

Correct value 0.1 0.4 0.2 0.2 0.1 1 3
D1/1000 0.695 0.559 0.192 0.234 0.101 1.000 3.000 0.5935
Confidence Int.

±
0.693 0.138 0.021 0.232 0.002 0.207 0.050

Conf. Int. as % 100% 25% 11% 100% 2% 21% 16%
D2/100000 0.378 0.608 0.195 0.111 0.100 1.000 3.000 0.1960
Confidence Int.

±
0.367 0.059 0.011 0.202 0.001 0.140 0.024

Conf. Int. as % 97% 10% 6% 182% 1% 14% 8%

The results show that

• All the confidence intervals cover the correct values of the parameters. That is, the
estimation technique was able to recover the parameter values, given the correct
model structure. This is a basic requirement for a trustworthy estimator.

• The longer experiments produced only moderately more accurate results. In estimating
a mean value, 100 times as many samples (as in experiment C2) would give a confi-
dence interval only 1/10 as wide; here the ratios are no better than 1/3 and mostly worse
than that. This suggests that more short experiments are more worthwhile.

• Curiously, one result has lower accuracy for the longer experiment, the second
phase demand of the application task App. Since the second phase does not block
the web server, it only affects the visible performance through congestion of App.
However as App is quite busy (96% utilized, see below), the performance might be
expected to be sensitive to this parameter.

• The most accurately estimated parameters were the demands for the database and
application phase 1. We can see that lower-layer parameters are more accurately
estimated. Since they block higher-layer tasks, they influence the performance.

• The resource utilizations show push-back between the layers, as is well-known for
software bottlenecks. The utilizations with 50 users are:

• processor utilizations:
o WSP: 0.88 (for a dual processor, that is maximum utiliza-

tion of 2.0)
o AppP: 0.61
o DBP: 0.34

• task utilizations:
o WS: 3.0 (for three threads)
o App: 0.96
o DB: 0.34
o Dir: 0.04

The App task is virtually saturated, and waiting for it introduces delays which
make the WS task also saturated (the push-back). But the servers below the App
task (its processor and the database server) are not heavily utilized.

The most sensitive parameters (indicated by the percentage confidence interval
widths) are the App processor and database server, which determine the holding
time of the App task for one service, and thus the system throughput and delay.

22 M. Woodside

• One parameter dirD is of marginal significance, based on its confidence interval. If
we examine the LQN we see that the directory service is a relatively light load on
processor AppP, so apparently it doesn’t have enough impact to be accurately es-
timated. The accuracy of estimation, relative to the actual value of 0.1, is also poor.

• The estimation of integer parameters was successful. The confidence intervals are
found in the conventional way, but are only of interest if the half-width is near to
or greater than 1.

Experiment D2 was repeated for a test with a longer user think time (15 units in-
stead of 5). Provided the correct think time was used as a controlled parameter in the
calculations for fitting, the estimated parameters and confidence intervals were identi-
cal. The predicted performance for think times of 5 and 15 units are plotted in Figure
8 with their 95% confidence intervals.

Equally, the model can be used to extrapolate from these experimental conditions
to different values of population, think time, and demands of operations for resources.

Fig. 8. Response time predictions for two values of the user think time (5 units and 15 units)

5 Exploiting the Model

A brief summary of uses of the model is (see also Figure 1):

1. Performance test design: the equation for confidence intervals (in the appendix)
shows that they depend on the covariances R and sensitivities H (which come from
the model). H can be affected by the configuration used to gather test data, and
should be chosen so that configurations that give high sensitivities to all the de-
sired parameters, should be combined. The duration of performance tests can also
be chosen, to give adequate accuracy.

 The Relationship of Performance Models to Data 23

2. Performance problem diagnosis and analysis of improvements: where performance
is inadequate, solutions at the architecture level can be analysed by changes to the
performance model.

3. Scalability analysis: scope out the space of probably configurations to identify
scalability limitations, by creating models of large configurations, built from sub-
models for components. This is straightforward for LQN models, where each proc-
ess has a submodel. Different kinds of scaling strategy can be analysed.

4. Product configurations for individual clients can be evaluated, using a mature cali-
brated model of the product.

5. Product upgrade analysis: when new features are planned, estimates for their
workload can be included in an existing model for a quick evaluation of their im-
pact; this can be refined using prototypes.

6. Product performance management: some techniques for adaptive control of service
configurations use a model of the application, with parameters that are updated
online to track changes in system usage, efficiency or load (e.g. [8]).

5.1 Validity of the Model

The fitting process effectively validates the model for the operational conditions un-
der which the data is gathered, and for nearby conditions within the range of the con-
figuration parameters. In this range we may say the model is used for interpolation in
the data. Of course additional validation may be done by additional measurements
within that range.

Many of the uses listed above require extrapolation from the data, and here is
where performance models are most useful. The advantage of fitting a performance
model instead of a polynomial or some other arbitrary function, comes from its realis-
tic underlying resource-usage semantics. So, how can we maintain confidence in the
predictions of the model.

Roughly speaking there are two ways the model may fail in extrapolation. First, as
we move away from the fitted range the confidence interval of predictions becomes
wider, as seen in Figures 6 and 8. This is understandable and can simply be recorded.
Second, some resource which was not included in the model, or which was not heav-
ily enough utilized to be accurately modeled, may become an active constraint in a
larger configuration. Consider for instance if the directory server in Figure 7 were
shared among 30 replicas of the application, it would be an important limitation. Or
imagine a database buffer pool which is not restricting at the scales of the test, but
which becomes a constraint in larger systems. Some comments follow:

1. Many parameters which are insensitive in small-scale testing are always insensi-
tive, and therefore their accuracy is not critical. The model itself can be used to
calculate the sensitivity in large-scale versions, if it is a concern.

2. Resources which may become critical in larger deployments should be identified
based on system expertise, and perhaps tests can be constructed which stress those
resources.

3. Traffic statistics, both the intervals between arrivals and the distribution of de-
mands made on applications, can challenge the assumptions of the performance
modeling tools. Long-tailed distributions for arrivals and demands, and correla-
tions between successive demands, are examples. These possibilities should not be

24 M. Woodside

ignored in any case, as they typically require more reserve capacity to handle them
with adequate performance. If they occur they also may require a more sophisti-
cated model. However the methods for parameter estimation would be the same, as
shown here.

5.2 Simplified Models

Regression modeling usually seeks to fit the simplest model that can explain the data.
One indicator of having excessive model structure and parameters is, fitted values
with large confidence intervals, as shown for queueing models in Table 2. However
an LQN model is simplified not by removing a single parameter, but by removing or
approximating a structural unit, a task or subset of tasks. A suitable approximation for
elements left out of a model is to introduce a pure delay in the holding time of an af-
fected resource, or in the response time. This delay can be fitted, and has a similar
role to fitting a constant in linear regression.

6 Conclusions

Performance models can be maintained in sync with a developing product, by cali-
brating their parameters from performance test data. The estimation techniques de-
scribed here use standard statistical methods, and non-intrusive monitoring to obtain
test data. The limitations of prediction accuracy can also be estimated.

Acknowledgements

This research was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC), the Ontario Centres of Excellence (OCE), and by the
IBM Centre for Advanced Studies, Toronto.

References

[1] Balsamo, S., DiMarco, A., Inverardi, P., Simeoni, M.: Model-based Performance Predic-
tion in Software Development. IEEE Trans. on Software Eng. 30(5), 295–310 (2004)

[2] Barber, S.: Beyond performance testing, parts 1-14, IBM DeveloperWorks, Rational Techni-
cal Library (2004), http://www-128.ibm.com/developerworks/rational/
library/4169.html

[3] Bogardi-Meszoly, A., Levendovszky, T., Charaf, H., Hashimoto, T.: Improved Evaluation
Algorithm for Performance Prediction with Error Analysis. In: Proc. 11th Int. Conf. on
Intelligent Engineering Systems, pp. 301–306 (2007)

[4] IBM, IBM Rational PurifyPlus, Purify, PureCoverage, and Quantify: Getting Started,
G126-5339-00 (May 2002)

[5] Franks, G., Majumdar, S., Neilson, J., Petriu, D., Rolia, J., Woodside, M.: Performance
Analysis of Distributed Server Systems. In: Proc. Sixth International Conference on
Software Quality (6ICSQ), Ottawa, pp. 15–26 (1996)

[6] Franks, G., Petriu, D., Woodside, M., Xu, J., Tregunno, P.: Layered bottlenecks and their
mitigation. In: Proc of 3rd Int. Conference on Quantitative Evaluation of Systems QEST
2006, Riverside, CA, September 2006, pp. 103–114 (2006)

 The Relationship of Performance Models to Data 25

[7] Jain, R.: The Art of Computer Systems Performance Analysis. John Wiley & Sons Inc.,
Chichester (1991)

[8] Kutner, M.H., Nachtsheim, C.J., Neter, J., Li, W.: Applied Linear Statistical Models, 5th
edn. McGraw-Hill, New York (2005)

[9] Litoiu, M., Zheng, T., Woodside, M.: Service System Resource Management Based on a
Tracked Layered Performance Model. In: Proc. IEEE Int. Conf. on Autonomic Comput-
ing, Dublin (June 2006)

[10] Liu, Y., Fekete, A., Gorton, I.: Design-Level Performance Prediction of Component-
Based Applications. IEEE Trans. on Software Engineering 31(11), 928–941 (2005)

[11] Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K., Irvin, R.B., Karavanic,
K.L., Kunchithapadam, K., Newhall, T.: The Paradyn Parallel Performance Measurement
Tool. IEEE Computer 28(11), 37–46 (1995)

[12] Rolia, J.A., Sevcik, K.C.: The Method of Layers. IEEE Trans. on Software Engineer-
ing 21(8), 689–700 (1995)

[13] Roth, P.C., Miller, B.P.: On-line Automated Performance diagnosis on Thousands of
Processes. In: ACM SigPLAN Symp. on Principles and Practices of Parallel Program-
ming (PPOPP 2006), New York (March 2006)

[14] Smith, C.U., Williams, L.G.: Performance Solutions. Addison-Wesley, Reading (2002)
[15] Storm, A.J., Garcia-Arellano, C., Lightstone, S.S., Diao, Y., Surendra, M.: Adaptive self-

tuning memory in DB2. In: Proc. 32nd Int. Conf. on Very large databases, Seoul, pp.
1081–1092 (2006)

[16] Tantawi, A.N.: Method and system for dynamic performance modeling of computer ap-
plication services. USA, Patent Application 20070299638 (2007)

[17] Vugrin, K.W., Swiler, L.P., Roberts, R.M., Stucky-Mack, N.J., Sullivan, S.P.: Confidence
Region Estimation: Techniques for Nonlinear Regression: Three Case Studies. Sandia
Laboratories Report SAND2005-6893 (October 2005)

[18] Woodside, M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T., Merseguer, J.: Performance
by Unified Model Analysis (PUMA). In: Proc. WOSP 2005, Mallorca, pp. 1–12 (2005)

[19] Woodside, C.M., Zheng, T., Litoiu, M.: The Use of Optimal Filters to Track Parameters
of Performance Models. In: Proc. 2nd Int. Conf. on Quantitative Evaluation of Systems,
Torino, Italy, pp. 74–84 (2005)

[20] Woodside, M., Franks, G., Petriu, D.C.: The Future of Software Performance Engineer-
ing. In: Proc Future of Software Engineering 2007, at ICSE 2007, May 2007, pp. 171–
187, Order Number P2829. IEEE Computer Society, Los Alamitos (2007)

[21] WOSP, The Proceedings of the ACM International Workshop on Software and Perform-
ance. ACM Press (1998-2007)

Appendix: Nonlinear Regression

Various numerical minimization techniques can be used to find x̂ . A simple one
which gives some insight into the nature of the problem is a simple gradient descent.
We form the derivative vector ∂E(x)/ ∂x:

∂E(x)/ ∂x = −2 Σt H
T(x; ut) R

-1 et,

where H(x; ut) = ∂h(x; ut)/ ∂x, and from any starting point x we make a gradient de-
scent step proportional to the negative gradient:

xnew = x + Δx = x − a ∂E(x)/ ∂x = x + (2a) Σt H
T(x; ut) R

-1 [z(t) − h(x; ut)]

26 M. Woodside

where a is the constant of proportionality, or step size control parameter. If this is re-
peated until x converges, we have simple gradient descent.

Various quasi-Newton methods are better. They use an approximation to the Hes-
sian matrix Exx (the matrix of second derivatives of E(x)):

Exx = ∂2E(x)/∂x2 = −2 Σt ∂HT(x; ut)/∂x R-1e +2 Σt H(x; ut)
TR-1H(x; ut)

 ≈ 2 Σt H(x; ut)
T R-1 H(x; ut)

The first term is ignored because it is small when the residuals are small, for instance
near the best fit (if the fit is good). Then the step size is determined by Exx. For exam-
ple, by differentiating a quadratic approximation for E(x) (a Taylor expansion around
the point x)), we could choose the minimum of the approximation, which is at

xnew = x + Δx = x − Exx ∂E(x)/∂x

Other quasi-Newton methods can also be applied to E(x). Some of them build a Hes-
sian approximation from information gathered over several steps.

Successive Linear Regressions
The same iterative algorithm is obtained by considering a sequence of weighted least-
squares problems based on linearizing h(x; u) about the current estimates of x. One
output of this interpretation is a standard calculation for the sampling covariance of
the estimates x, which gives confidence intervals.

Ordinary regression equations can be written based on the Taylor expansion
around any current estimate x as (referring to [8] Chapter 13):

zt = h(x; ut) + H(x; ut)(Δx) + vt

(where v is still the hypothetical random error term) and finding the increment Δx to
minimize the weighted sum of squares for this linear model. We put all the observa-
tions into a single partitioned vector of mT components, and similarly all the residuals
e, random errors v, the predictions h, and also put the sensitivities H into a single
partitioned matrix, giving (using the notation of Kutner et al, chapter 13):

Y = vector combining the T error vectors et = zt − h(x; ut) at the current starting es-
timate x

D = matrix combining the H matrices computed at x
W = a matrix with T “R-1” matrices on its diagonal, one for each period

These partitioned matrices look like this:

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

−

−

−

1

1

111

...00

............

0...0

0...0

,

),(

...

),(

...

),(

,

...

...

R

R

R

W

uxH

uxH

uxH

D

e

e

e

Y

T

t

T

t

 The Relationship of Performance Models to Data 27

and the model to be fitted in the neighborhood of some starting estimate x is

Y = D Δx + v,

where the elements of D are treated as the observations. Now by conventional least-
squares solution the value of Δx which minimizes the weighted sum of squares (Y- D
Δx)TW(Y- D Δx) is

Δx = (DTWD)-1 DTWY
x̂ new = x̂ + Δx

and this is used to update x̂ , and to iterate to convergence. It may be more conven-
ient to see it in terms of sums over the matrices and vectors for each measurement
period, by expanding the partitioned matrices:

Δx = (Σt Ht
TR-1Ht)

-1 ΣtHt
TR-1et

Remember that H and e are those values for the starting estimate x for this step, and
Ht is different for each step because ut is different.

The covariance matrix of Δx (and thus of the solution) is

P = (mse) (DTWD)-1 = (mse) (Σt Ht
TR-1Ht)

-1

where mse estimates a scale factor for the covariance, given by:

mse = (YTWY − ΔxTDTWY)/(mT − n) = (Σt et
TR-1et

 − ΔxT ΣtHt
TR-1et)/(mT − n)

which as the iteration converges and Δx goes to zero, becomes:

mse = YTWY/(mT − n) = (Σt et
TR-1et)/(mT − n)

The factor (mT − n) is the degrees of freedom remaining in the data after fitting n
parameters to mT measured values.

Confidence Intervals
The converged solution x̂ of the above linear approximation can be used to give
conventional confidence interval estimates for each parameter separately. Under the
assumptions we have made (normality of measurement errors, and approximate line-
arity of h(x,u)), the posterior distribution of x is normal with covariance matrix P.
Then the confidence interval at level α for the kth parameter is

x̂ k ± t(1-α/2; mT-n) (sqrt(Pkk))

where t in this equation is the t-statistic with (mT-n) degrees of freedom (measured
values - fitted parameters), and Pkk is the estimated variance of Δxk, a diagonal ele-
ment of P.

According to the linearization of h, a small deviation Δy of the predicted perform-
ance y, due to a small deviation Δx in x, is given by

Δy = H Δx

Therefore the approximate distribution of the predictions y of the performance model,

for the fitted parameters x̂ and a given u, is also normal with mean ŷ = h(x̂ ,u) and
covariance matrix C:

28 M. Woodside

C = Cov(y) = H(x̂ , u) P HT(x̂ ,u)

From this we can derive a confidence interval for the prediction yi as

ŷ i + t(1−α/2; mT-n) (sqrt(Cii))

When we want to state a combined uncertainty interval for a set of parameters (e.g.
all of them at once) it is called a confidence region. Based on the normality approxi-
mation for the estimated parameters and the predicted performance values, both of
these vectors have ellipsoidal confidence regions, bounded by contours of the normal
distribution, which are given by

for parameters: (x − x̂)TP-1(x − x̂) = constant
for predictions: (y − ŷ)TC-1(y − ŷ) = constant

A simpler approach is to consider a rectangular subspace or box bounded by the in-
tersection of the separate intervals. The “Bonferroni” approximation assumes this has
a probability given by the product of the probabilities associated with each parameter
separately. For instance if there are three parameters with 95% confidence intervals,
the intersection of these only has probability no greater than 0.953 = 0.857. (It may be
less because of interaction effects between the parameter estimates.) With this ap-
proach, a conservative confidence region for n parameters at level α is given by the
intersection of separate estimates at level α/n. Examples of more exact confidence
regions, showing interactions between the variables, and references are given in [17].

Comparison of Structures
Two models M1 and M2 of different structures may be compared, to evaluate if one is
significantly better fit than the other, using a standard F test. Suppose the values of E
are E1 and E2 (E2 < E1), and the number of fitted parameters are respectively n1 and
n2 (n2 > n1), then M1 is judged to be significantly better at the level α if

[(E2 − E1)/(n2 − n1)]/[E2/(mT − n2 -1)] > F(n2 − n1, mT − n −1, α)

where F() is the F-statistic with degrees of freedom (n2-n1, mT - n - 1) corresponding to
the degrees of freedom in the two mean squares [8]. A model with more parameters
should not be able to give a larger residual error, so the fraction should always be positive.

Extracting Response Times from Fluid Analysis

of Performance Models

Jeremy T. Bradley, Richard Hayden, William J. Knottenbelt,
and Tamas Suto

Department of Computing, Imperial College London
180 Queen’s Gate, London SW7 2BZ, United Kingdom

{jb,rh,wjk,suto}@doc.ic.ac.uk

Abstract. Recent developments in the analysis of stochastic process
algebra models allow for transient measures of very large models to be
extracted. By performing so-called fluid analysis of stochastic process
algebra models, it is now feasible to analyse systems of size 101000 states
and beyond. This paper seeks to extend the type of measure that can
be extracted from this style of fluid analysis. We present a systematic
transformation of a PEPA model that will allow us to extract measures
analogous to response times. We end by extracting these response-time
measures from a PEPA model of a healthcare system.

1 Introduction

The ability to calculate response-time or passage-time measures in quantitative
analysis is important in many industrial systems. Response-time quantiles form
the basis of many service level agreements (SLAs) in the telecommunications and
other industries, e.g. a broadband connection should be successfully established
within 2 seconds, 95% of the time.

However such industrial-scale systems require huge state-space analysis capa-
bility. If using traditional explicit state-space performance techniques, we quickly
exceed the capability of Markov chain response-time analysers [1] to be able to
generate and analyse the state space.

Recently, so-called fluid techniques have been developed to cope with the
state-space explosion. This approach, typically, approximates the state space
with a sequence of time-varying real variables and describes their evolution by
a set of differential equations [2]. This sounds at first to be a panacea, but
these techniques typically produce transient component counts at a given time
instant. What we would like to do is reproduce useful response-time measures
while taking advantage of the massive state-space capability of the fluid analysis
techniques.

In this paper, we present a combination of these approaches by looking at
how response-time measures might be extracted from fluid analysis of a sto-
chastic process algebra model, PEPA. We show how, by modifying the state
space of the model in a systematic fashion, we can transform the problem of re-
sponse time extraction from fluid models to one of component time-to-extinction
measurement.

S. Kounev, I. Gorton, and K. Sachs (Eds.): SIPEW 2008, LNCS 5119, pp. 29–43, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

30 J.T. Bradley et al.

2 Stochastic Process Algebra and Fluid Modelling

2.1 PEPA

PEPA [3] as a performance modelling formalism has been used to study a wide
variety of systems: multimedia applications [4], mobile phone usage [5], GRID
scheduling [6], production cell efficiency [7] and web-server clusters [8] amongst
others. The definitive reference for the language is [3].

As in all process algebras, systems are represented in PEPA as the composition
of components which undertake actions. In PEPA the actions are assumed to
have a duration, or delay. Thus the expression (α, r).P denotes a component
which can undertake an α action at rate r to evolve into a component P . Here
α ∈ A where A is the set of action types. The rate r is interpreted as a random
delay which samples from an exponential random variable with parameter, r.

PEPA has a small set of combinators, allowing system descriptions to be built
up as the concurrent execution and interaction of simple sequential components.
The syntax of the type of PEPA model considered in this paper may be formally
specified using the following grammar:

S ::= (α, r).S | S + S | CS

P ::= P ��
L

P | P/L | C

where S denotes a sequential component and P denotes a model component which
executes in parallel. C stands for a constant which denotes either a sequential
component or a model component as introduced by a definition. CS stands for
constants which denote sequential components. The effect of this syntactic sep-
aration between these types of constants is to constrain legal PEPA components
to be cooperations of sequential processes.

More information and structured operational semantics on PEPA can be found
in [3]. A brief discussion of the basic PEPA operators is given below:

Prefix. The basic mechanism for describing the behaviour of a system with
a PEPA model is to give a component a designated first action using the
prefix combinator, denoted by a full stop, which was introduced above. As
explained, (α, r).P carries out an α action with rate r, and it subsequently
behaves as P .

Choice. The component P + Q represents a system which may behave either
as P or as Q. The activities of both P and Q are enabled. The first activ-
ity to complete distinguishes one of them: the other is discarded. The sys-
tem will behave as the derivative resulting from the evolution of the chosen
component.

Constant. It is convenient to be able to assign names to patterns of behaviour
associated with components. Constants are components whose meaning is
given by a defining equation. The notation for this is X

def= E. The name X
is in scope in the expression on the right hand side meaning that, for exam-
ple, X

def= (α, r).X performs α at rate r forever.

Extracting Response Times from Fluid Analysis of Performance Models 31

Hiding. The possibility to abstract away some aspects of a component’s be-
haviour is provided by the hiding operator, denoted P/L. Here, the set L
identifies those activities which are to be considered internal or private to
the component and which will appear as the unknown type τ .

Cooperation. We write P ��
L

Q to denote cooperation between P and Q
over L. The set which is used as the subscript to the cooperation symbol, the
cooperation set L, determines those activities on which the components are
forced to synchronise. For action types not in L, the components proceed in-
dependently and concurrently with their enabled activities. We write P ‖ Q
as an abbreviation for P ��

L
Q when L is empty. Further, particularly useful

in fluid analysis is, P [n] which is shorthand for the parallel cooperation of n
P -components, P || · · · || P

︸ ︷︷ ︸

n

.

In process cooperation, if a component enables an activity whose action type
is in the cooperation set it will not be able to proceed with that activity until
the other component also enables an activity of that type. The two components
then proceed together to complete the shared activity. Once enabled, the rate of a
shared activity has to be altered to reflect the slower component in a cooperation.

In some cases, when a shared activity is known to be completely dependent
only on one component in the cooperation, then the other component will be
made passive with respect to that activity. This means that the rate of the
activity is left unspecified (denoted �) and is determined upon cooperation, by
the rate of the activity in the other component. All passive actions must be
synchronised in the final model.

Within the cooperation framework, PEPA respects the definition of bounded
capacity: that is, a component cannot be made to perform an activity faster by
cooperation, so the rate of a shared activity is the minimum of the apparent
rates of the activity in the cooperating components.

The definition of the derivative set of a component will be needed later in the
paper. The derivative set, ds(C), is the set of states that can be reached from a
the state C. In the case, where C is a state in a strongly connected sequential
component, ds(C) represents the state space of that component.

2.2 Fluid Analysis

Traditionally, stochastic process algebras such as PEPA have been analysed by
expanding the model description and extracting the global state space. The
underlying mathematical model of a PEPA-generated state space is a continuous-
time Markov chain or CTMC. The CTMC can be analysed for steady-state
measures, transient measures or response-time measures and related back to
the original PEPA model. This process suffers from the state-space explosion
problem.

In previous fluid modelling papers [2,9], a PEPA model was translated into a
set of ordinary differential equations which were then solved. The results gave

32 J.T. Bradley et al.

measures that roughly equated to mean transient measures in some cases.1 What
we seek to achieve here is a type of response-time result that can be extracted
from the fluid analysis of a PEPA model.

Fluid modelling of process models refers to a continuum representation of the
underlying discrete state space. Deriving such a representation from a
performance-annotated process model, such as PEPA, gives a description of the
flow of components from one derivative state to the next over time.

The first description of fluid analysis of PEPA models was presented by Hill-
ston [2]. This has since been expanded upon [9,10] but in this paper we keep to
the subset of PEPA originally considered by Hillston [2] for translation to a fluid
model.

In brief, we will summarise how the fluid model is constructed from a PEPA
model that displays a large degree of parallelism. In [2], Hillston shows how
a class of PEPA models can be analysed using coupled ordinary differential
equations (ODEs). In this section, we summarise the numerical vector form
representation and ODE analysis of PEPA models.

Cooperating models of identical non-synchronising agents of the form, for
example:

P || P || · · · || P
︸ ︷︷ ︸

n

are more succinctly represented by a vector which describes the number of com-
ponents in a given derivative state. That is to say, suppose P has two other
derivative states, P ′ and P ′′, in its component description. A triple (v1, v2, v3)
could be used to represent there being v1 components in state P , v2 in state P ′

and v3 in state P ′′ in the cooperation above. This creates an aggregation of the
original explicit state space where, for example, the states P ′ || P || · · · || P and
P || P ′ || · · · || P are combined with other states where there is only a single P ′

component in cooperation with P components.
Clearly v1 + v2 + v3 = n, the total number of components in the coopera-

tion. The ordering of the derivative states within the expression above makes
no difference to the observable behaviour. Thus there is no loss of information
in simply counting derivatives in this way rather than recording their relative
positions. Moreover it has the effect of reducing the state-space representation
to an aggregated form (described in [11]) which requires a vector representation
of size |ds(P)|, the number of derivative states of P , rather than one of size n,
in the unaggregated form.

We demonstrate this aggregation with the generic example of an n-processor/
m-resource system given in [2]. We have a processor component, Proc0, which
can perform a task1 action at rate r1 and become a Proc1 component. From
there the Proc1 component performs a task2 action at rate r2 to return to
state Proc0. The Res0 component performs similarly to switch between states
Res0 and Res1. The final system comprises n processor components in parallel
cooperating over the task1 action with m resource components, also in parallel.
1 The exact relationship between the deterministic solution of the fluid model and the

traditional probabilistic analysis of the CTMC is the subject of current research.

Extracting Response Times from Fluid Analysis of Performance Models 33

This means that in order for a single Proc0 component to perform a task1 action,
it has to synchronise with a single Res0 component.

Proc0
def= (task1, r1).Proc1

Proc1
def= (task2, r2).Proc0

Res0
def= (task1, r1).Res1

Res1
def= (reset , s).Res0

System def= Proc0[n] ��
{task1}

Res0[m] (1)

This model would usually be translated into an underlying CTMC according to
the operational semantic rules of PEPA, given in [3]. For even small values of m
and n this results in an massive CTMC state-space. An aggregate state ((n −
1, 1), (m, 0)) would represent a possible state where there were n − 1 processor
components in state Proc0, one in state Proc1, m resource components in state
Res0, and none in state Res1.2

Hillston [2] further goes on to show how a set of ODEs can be constructed
which can represent the discrete number of components in a given state with
a continuous state-space approximation. This is particularly useful in agent-
oriented models which typically have many thousands of similar components
in parallel. For this type of model, this type of aggregation is essential if the
resulting state-space explosion is to be avoided.

2.3 Numerical Vector Form and ODE Generation

Consider a PEPA model made up of component types Ci, such that the system
equation has the form:

C1[n1] ��
L

C2[n2] ��
L

· · · ��
L

Cm[nm] (2)

where C[n] is the parallel composition of n C-components. Take Cij to be the jth
derivative state of component Ci. The cooperation set L is made up of common
actions to Ci for 1 ≤ i ≤ m. Now a numerical vector form for such a model
would consist of (vij : 1 ≤ i ≤ m, 1 ≤ j ≤ |ds(Ci)|) where vij is the number
of Cij components in the system at a given time. A set of coupled differential
equations can be created to describe the time-variation of vij as follows:

dvij (t)
dt

= −
∑

k : Cij

(a,·)
−−−→Cik

rate of a-action leaving Cij

+
∑

k : Cik

(b,·)
−−−→Cij

rate of b-action leaving Cik (3)

2 For comparison, m = n = 100 would generate an explicit CTMC state-space of 2200

states, but an aggregate state-space of only 1012 states.

34 J.T. Bradley et al.

To make this specific to PEPA models of the type in Equation (2), we need a
few preliminary definitions. Let us define Ex (C) to be the set of action/rate pairs
or activities (a, r) that are enabled by derivative state, C. Similarly, define the
set of entry activities, En(C), to be the set of action/rate pairs (b, s) that lead to

state C, that is, for some C′, there exists a one-step evolution C′ (b,s)

−−−→ C. It is
also assumed in [2] that if, for some component type Ci, a derivative state enables
an a-action, then no other derivative state of Ci can enable that same action.
We follow that restriction here for simplicity, but further work on extending the
expressiveness of fluid translation is on-going [9,10].

From these definitions, we can create a more precise version of Equation (3):

dvij (t)
dt

= −
∑

(a,r)∈Ex(Cij)

r × min{vkl : Ckl

(a,r)

−−−→ }

+
∑

(b,s)∈En(Cij)

s × min{vkl : Ckl

(b,s)

−−−→ } (4)

This formulation deals with PEPA models that cooperate actively and do so with
constituent components enabling shared actions with the same rate. That is:

P ��
{a}

Q where P
(a,λ)

−−−→ P ′ and Q
(a,λ)

−−−→ Q′

This can be generalised straightforwardly to heterogeneous rates in coopera-
tion where:

P ��
{a}

Q where P
(a,λ)

−−−→ P ′ and Q
(a,μ)

−−−→ Q′

by a small modification to the ODE formula to:

dvij (t)
dt

= −
∑

(a,rp)∈Ex(Cij)

min{rpvkl : Ckl

(a,rp)

−−−→ }

+
∑

(b,sp)∈En(Cij)

min{spvkl : Ckl

(b,sp)

−−−→ } (5)

where {rp} and {sp} represent the set of distinct rates of a-actions and b-actions
as enabled by the derivatives of the component-types Ci.

For the subset of PEPA worked with in this paper, the solution of these sets
of ordinary differential equations, for a particular model, represents an approxi-
mation to the mean number of components at time t.

3 Response-Time Generation

The standard definition of a response time random variable in a Markov chain
is set up as below.

Consider a finite, irreducible, continuous-time Markov process, {X(t) : t ≥
0}. X(t) denotes the state of the Markov process at time t ≥ 0. N(t) denotes
the number of state-transitions that have occurred by time t.

Extracting Response Times from Fluid Analysis of Performance Models 35

The first passage-time from a source state i at time 0 into a non-empty set of
target states j is:

Pij = inf{u > 0 : X(u) ∈ j, N(u) > 0 | X(0) = i} (6)

for a stationary time-homogeneous Markov process.
Loosely, this can be considered as the time-to-absorption from state i to one of

the states in j. What we propose in this paper, is to construct a similar concept
in the fluid analysis of a PEPA model of the type of Equation (2).

One of the standard techniques for extracting response-time distributions from
CTMCs, is to make states in the target set, j, absorbing and perform transient
analysis on the resulting modified chain [12].

Our approach is to perform a similar absorbing modification, but at the PEPA
abstraction level rather than at the CTMC level, and then solve the resulting
fluid model. The time-to-absorption measure which represents the response time
in the original CTMC calculation is translated into the component extinction-
time in the new fluid model.

3.1 Constructing an Absorbing PEPA Model

First, we will set up a basic PEPA absorption operator, �, which can be used sys-
tematically to modify any PEPA model in preparation for extracting a response-
time measure.

We will only consider response times in terms of transitions of individual
component types, e.g. how long before all the voters have voted, or all the clients
have received service.

This translates into finding the response time for ni components of type Ci,
to have entered one of the states H = {Cij : j ∈ j}, having started in state
Ci1, where j represents the set of target states in the component type being
considered. Taking a PEPA model of the form:

C1[n1] ��
L

C2[n2] ��
L

· · · ��
L

Cm[nm] (7)

Given a set, H = {Cij : j ∈ j}, of component states that we wish to make
absorbing, we apply the absorption operator recursively over the PEPA syntax:

((a, λ).P) �(U) H =

⎧

⎪
⎨

⎪
⎩

(a, λ).Stop : if P ∈ H

(a, λ).(P �(U∪{P}) H) : if P �∈ H, P �∈ U

(a, λ).P : if P �∈ H, P ∈ U

(P + Q) �(U) H = (P �(U) H) + (Q �(U) H)
(P\L) � H = (P � H)\L

(P ��
L

Q) � H = (P � H) ��
L

(Q � H)

P �H is shorthand for P �(∅) H where the indexed set keeps track of previously
visited component states. The operator defined above, recurses across the PEPA
description and on encountering a component state in the set H , it replaces it

36 J.T. Bradley et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12

C
om

po
ne

nt
s

Time, t

Proc0
Proc1
Res0

Fig. 1. ODE solution of the original Process/Resource model for number of Proc0,
Proc1, Res0 components

with the absorbing state Stop. We assume that derivative states are uniquely
labelled across the component types to avoid multiple component types being
made absorbing. If this is not the case then a simple relabelling can be applied
in advance of this transformation.

In this paper, we are considering simple response times that are expressed in
terms of one component type only. We will only consider derivative states in H that
come from the same component type Ci for any i (as given by the definition of H).

Having absorbing states in PEPA is unusual as PEPA models usually have
irreducible underlying CTMCs. The absorbing state in this instance is Stop, and
a discussion of absorbing states in PEPA can be found in [13].

3.2 Processor–Resource Example

We use the earlier example of an n-processor/m-resource system from
Equation (1). We require the response time of n Proc-components making the
transition from Proc0 to Proc0 again. To achieve this, we apply the absorption
operator to the PEPA model System � H with H = {Proc0}. This gives an
absorbed model:

Proc0
def= (task1, r1).Proc1

Proc1
def= (task2, r2).Stop

Res0
def= (task1, r1).Res1

Res1
def= (reset , s).Res0

System def= Proc0[n] ��
{task1}

Res0[m]

Extracting Response Times from Fluid Analysis of Performance Models 37

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12

C
om

po
ne

nt
s

Time, t

Proc0
Proc1
Res1

Fig. 2. ODE solution of the absorbed Process/Resource model with response time
measured at 11.515s

By way of comparison, solving the ODEs generated by the original model gives
the plot in Figure 1. Solving the ODEs for the absorbing version gives Figure 2.
In both cases n = 100, m = 60, r1 = 1.0, r2 = 0.6 and s = 0.4.

In Figure 2, we see the count of Proc0 and Proc1 components drop to 0 as
would be expected in an absorbing model. We count the moment of absorption
as the moment at which < 0.5% of the components remain in either state Proc0
or Proc1. This is measured at time 11.52 and represents a response-time measure
for the time taken for n = 100 Proc-components to transit from state Proc0 to
Proc0 while cooperating with the Res-components.

4 Worked Example: Healthcare System

The healthcare system in this section is a model of an accident and emergency
department, first presented as a stochastic Petri net model in [14].

The system consists of patients, doctors and nurses, where patients who fall
ill, are assessed by nurses before being sent to doctors for tests, treatment or
surgery. The purpose of the system is to assess how fluctuations in the numbers
of resources in the system, the number of nurses and doctors, affect the overall
response-time for treatment.

System def= Patient [P] ��
L

(Nurse[N] || Doctor [D])

where L = {see nurse, complete assessment , see emergency nurse, eemergency
assessment , see doctor , discharge treated patient , surgery, recover}.

38 J.T. Bradley et al.

The attentive reader will note that this system equation is not explicitly of the
form of Equation (2), that we require for this particular style of fluid analysis.
However, since the Doctor and Nurse components do not synchronise on any
actions, we can effectively treat the (Nurse[N] || Doctor [D]) cooperation as a
single component group.

The nurses in the system can either see a standard patient or an emergency
admittance. In each case an assessment is made before handing on for treatment.

Nurse def= (see nurse, r4).(complete assessment , r5).Nurse
+ (see emergency nurse, r6).(emergency assessment , r7).Nurse

The doctors in the system can either see and treat the patient or admit the
patient for surgery.

Doctor def= (see doctor , r8).(discharge treated patient , r11).Doctor
+ (surgery , r9).(recover , r12).Doctor

Finally, the patients are of two types – either standard walk-in arrivals or emer-
gency cases. They cooperate with the nurses and the doctors over the shared
actions before being discharged.

Patient def= (fall ill , r1).Ill

Ill def= (walk in arrival , r2).Waiting room
+ (ambulance arrival , r3).Trolley

Waiting room def= (see nurse, r4).Patient assessment

Patient assessment def= (complete assessment , r5).Waiting to be treated

Trolley def= (see emergency nurse, r6).Ambulance assessment

Ambulance assessment def= (emergency assessment , r7).Waiting to be treated

Waiting to be treated def= (see doctor , r8).Treated by doctor
+ (surgery, r9).Surgery done
+ (perform lab tests, r10).Tests done

Treated by doctor def= (discharge treated patient , r11).Patient

Surgery done def= (recover , r12).Patient Recovered

Patient Recovered def= (discharge recovered patient , r13).Patient

Tests done def= (evaluate results, r14).Waiting to be treated

Using the techniques of Section 2.3, we construct a system of 17 coupled
ODEs (for 16 derivative states of the original model plus the newly-introduced
absorbing state) for P = 100 patients, N = 30 nurses, D = 5 doctors.3 Such a

3 The following rate values are used throughout this paper r1 = 1, r2 = 4, r3 = 3,
r4 = r5 = r6 = r7 = r11 = r14 = 10, r8 = 5, r9 = r10 = r12 = 3 and r13 = 8.

Extracting Response Times from Fluid Analysis of Performance Models 39

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

C
om

po
ne

nt
s

Time, t

Patient
Ill

Nurses
Doctors

Fig. 3. ODE solution of the original hospital model for number of Patient , Ill , Nurse
and Doctor components

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

C
om

po
ne

nt
s

Time, t

Patient
Ill

Nurses
Doctors

Fig. 4. ODE solution of the hospital model for patient response-time metric

system is well beyond the capability of existing explicit state-space techniques
to analyse due to the size of the underlying CTMC. Without modification, we
obtain solutions for patients, ill patients, nurses and doctors in Figure 3.

Now we seek the response-time measure for the time taken for P = 100
patients to pass through the system and go from state Patient back to state

40 J.T. Bradley et al.

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

C
om

po
ne

nt
s

Time, t

Patient
Ill

Nurses
Doctors

Fig. 5. ODE solution of the hospital model for patient response-time metric

Patient . We set up the absorbing PEPA model with the transformation System�

{Patient}. Plotting the new set of 18 resulting ODEs gives Figure 4, and on
examining the data, we obtain the measure that it takes 7.17 hours for all 100
patients to progress through the system.

Finally, we seek a response-time measure on the progress of doctors in the
model. Similarly, we calculate the response-time for D = 5 doctors to go from
state Doctor to state Doctor . We set up the absorbing PEPA model with the
transformation System � {Doctor}. Plotting the new set of 18 resulting ODEs
gives Figure 5, and on examining the data, we obtain the measure that it takes
1.84 hours for all 5 doctors to process at least 1 patient.

4.1 Comparison with a CTMC-Derived Passage Time

Given the motivations behind developing such techniques of fluid analysis, it
is of course computationally infeasible to compute passage times in the usual
manner4 for models of the magnitude of that just presented. In this section, we
consider a scaled down form of the healthcare model (5 patients, 3 nurses and 2
doctors: about 24 million states). This will allow a comparison of the quantity
computed using the new technique presented here against the CTMC-derived
passage time.

We work again with response-time measure of the healthcare model obtained
via the transformation System � {Patient}. Figure 6 shows the CDF for the
CTMC-derived time of passage from the initial state to that in which all Patient
components have reached the Stop state. Since we defined the point of absorption
4 Using the standard uniformisation technique of the underlying CTMC.

Extracting Response Times from Fluid Analysis of Performance Models 41

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

C
D

F

Time, t

Fig. 6. CTMC passage time to patient absorption CDF for the small hospital model

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10

N
um

be
r

of
 a

bs
or

be
d

pa
tie

nt
s

Time, t

Fig. 7. ODE solution of the small hospital model for patient response-time metric,
showing only the variable for the patient absorbing state (Stop)

for the ODE-derived solution to be when the sum of the continuous variables
counting the states of the patients reaches 0.5% of the original component pop-
ulation, it makes at least intuitive sense to look at the 99.5% quantile of the
corresponding CTMC passage time. Examining the data, we see that in the

42 J.T. Bradley et al.

direct CTMC passage-time calculation it takes approximately 7.6 hours for
99.5% of the Patient components to absorb. Figure 7 shows the result of in-
tegrating the 18 ODEs for the model. In this case, it takes about 6.13 hours for
99.5% of the original patient population to be absorbed.

A general observation from this preliminary comparison is that the absorbing
fluid model appears to absorb more quickly than the equivalent CTMC cumu-
lative distibution function of the passage-time. Work is on-going to characterise
this relationship more formally but it appears that it may be a justifiable result
in many cases.

5 Conclusion

Fluid analysis of stochastic process algebra models is a powerful analytic tool
for obtaining quantitative analysis of massive state-space models. We have sum-
marised existing fluid techniques for a popular process algebra, PEPA, and
pointed out that the type of measure that is obtainable from the standard fluid
analysis [2] is restricted to a form of transient analysis. We have shown, in this pa-
per, how it might be possible to express and extract response-time style measures
from fluid analysis of stochastic process algebra models. We did this by using
an analogous absorbing state technique to that used in the explicit state-space
analysis of response times in CTMCs. By constructing an absorption operator
for the PEPA language, we have a simple tool for allowing general PEPA models
to be analysed for fluid-generated response times.

In this paper, we looked for the absorption of 99.5% of the components under
consideration in the system to extract the response time. We compared that with
the equivalent 99.5% CDF quantile measurement in a 24 million state CTMC
version of a healthcare system. We postulate that the fluid-generated response
time will tend to underestimate the CTMC response-time measure in general,
but further work is required in this area to show this. We would like to establish
a relationship with the mean response-time measurement of traditional CTMC
analysis. We are also looking to generate variance and higher moment metrics
for the response-time measure extracted in this way.

Finally, there is the potential for constructing more expressive measures on
more general models. Currently, we only look for movement of an entire popula-
tion of component types from one state to another. It would be a clear advantage
to be able to look at response times of a combination of partial movements of
populations of components types. We see no reason why this approach should
not be extended directly to more general PEPA models as the fluid semantics
are defined for those models.

Acknowledgements

The authors would like to thank Allan Clark for help with ipc and Jane Hillston
for advice over fluid mean response time calculations. In addition, we would
like to credit the anonymous referees for helpful comments which improved the

Extracting Response Times from Fluid Analysis of Performance Models 43

paper. Jeremy Bradley, William Knottenbelt and Tamas Suto are supported in
part by the EPSRC grant GRAIL, ref. EP/D505933/1.

References

1. Bradley, J.T., Dingle, N.J., Gilmore, S.T., Knottenbelt, W.J.: Extracting passage
times from PEPA models with the HYDRA tool: a case study. In: Jarvis, S.A.
(ed.) UKPEW 2003, Proceedings of 19th Annual UK Performance Engineering
Workshop, University of Warwick, pp. 79–90 (July 2003)

2. Hillston, J.: Fluid flow approximation of PEPA models. In: QEST 2005, Proceed-
ings of the 2nd International Conference on Quantitative Evaluation of Systems,
Torino, pp. 33–42. IEEE Computer Society Press, Los Alamitos (2005)

3. Hillston, J.: A Compositional Approach to Performance Modelling. Distinguished
Dissertations in Computer Science, vol. 12. CUP (1996)

4. Bowman, H., Bryans, J.W., Derrick, J.: Analysis of a multimedia stream using
stochastic process algebras. The Computer Journal 44(4), 230–245 (2001)

5. Fourneau, J.M., Kloul, L., Valois, F.: Performance modelling of hierarchical cellular
networks using PEPA. Performance Evaluation 50(2–3), 83–99 (2002)

6. Thomas, N., Bradley, J.T., Knottenbelt, W.J.: Stochastic analysis of scheduling
strategies in a GRID-based resource model. IEE Software Engineering 151(5), 232–
239 (2004)

7. Holton, D.R.W.: A PEPA specification of an industrial production cell. In: Gilmore,
S., Hillston, J. (eds.) Process Algebra and Performance Modelling Workshop, Ed-
inburgh, June 1995. The Computer Journal, vol. 38(7), pp. 542–551. CEPIS (1995)

8. Bradley, J.T., Dingle, N.J., Gilmore, S.T., Knottenbelt, W.J.: Derivation of
passage-time densities in PEPA models using ipc: the Imperial PEPA Compiler.
In: Kotsis, G. (ed.) MASCOTS 2003, Proceedings of the 11th IEEE/ACM In-
ternational Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunications Systems, University of Central Florida, pp. 344–351. IEEE
Computer Society Press, Los Alamitos (2003)

9. Bradley, J.T., Gilmore, S.T., Hillston, J.: Analysing distributed internet worm at-
tacks using continuous state-space approximation of process algebra models. Jour-
nal of Computer and System Sciences (in press, 2007)

10. Hayden, R.: Addressing the state space explosion problem for PEPA models
through fluid-flow approximation. Technical report, Ugrad. project report, Imperial
College London (2007)

11. Gilmore, S., Hillston, J., Ribaudo, M.: An efficient algorithm for aggregating PEPA
models. IEEE Transactions on Software Engineering 27(5), 449–464 (2001)

12. Dingle, N.J., Harrison, P.G., Knottenbelt, W.J.: Uniformization and hypergraph
partitioning for the distributed computation of response time densities in very
large Markov models. Journal of Parallel and Distributed Computing 64(8), 908–
920 (2004)

13. Thomas, N., Bradley, J.T.: Terminating processes in PEPA. In: Djemame, K.,
Kara, M. (eds.) UKPEW 2001, Proceedings of 17th Annual UK Performance Eval-
uation Workshop, Leeds, July 2001, pp. 143–154 (2001)

14. Suto, T., Bradley, J.T., Knottenbelt, W.J.: Performance Trees: Expressiveness and
quantitative semantics. In: QEST 2007, 4th International Conference on the Quan-
titative Evaluation of Systems, pp. 41–50. IEEE, Los Alamitos (2007)

Approximate Solution of a PEPA Model of a

Key Distribution Centre

Yishi Zhao and Nigel Thomas

School of Computing Science, Newcastle University, UK
{Yishi.Zhao,Nigel.Thomas}@ncl.ac.uk

Abstract. In this paper we explore the trade-off between security and
performance in considering a model of a key distribution centre. The
model is specified using the Markovian process algebra PEPA. The ba-
sic model suffers from the commonly encountered state space explosion
problem, and so we apply some model reduction techniques and approx-
imation to give a form of the model which is more scalable. The system
is analysed numerically and results derived from the approximation are
compared with simulation.

1 Introduction

One of the more intriguing areas of performance engineering to emerge over
recent years has been the study of the overhead introduced by making a system
secure. It is clear that in order to add more functionality to a system that more
execution time is required. However, in the case of security, the benefit accrued
from any additional overhead is not easy to quantify and so it is very hard for
the performance engineer to argue that a particular performance target should
take precedence over a security goal. One area where alternative secure solutions
exist is in cryptography, where there may be a choice of algorithm, or even a
choice of key length, which will greatly influence the performance of the system.
For this reason cryptographic protocols are one of the few areas of security to
have received much attention from the performance community [4,5,8]. To date
this work has been largely limited to measurement and has not addressed the
underlying causes of delay which might be understood by modelling or detailed
code analysis.

In this paper we tackle a different, but related, problem in the area of the
performance - security trade-off, namely key exchange. Our initial inspiration
for this work has been the study of the wide mouth frog protocol by Buchholz et
al [2]. The authors used the stochastic process algebra PEPA to analyse timing
properties of the protocol. Although their motivation was to investigate timing
attacks, the models developed in [2] showed how authentication protocols can
be modelled effectively in PEPA.

The paper is organised as follows. In the next section we introduce the sys-
tem to be modelled, the key distribution centre (KDC). This is followed by a
brief overview of the Markovian process algebra PEPA. Section 4 introduces the

S. Kounev, I. Gorton, and K. Sachs (Eds.): SIPEW 2008, LNCS 5119, pp. 44–57, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Approximate Solution of a PEPA Model of a Key Distribution Centre 45

basic model of the KDC, followed by a simplified (equivalent) version and an
approximation in Section 5. Some numerical results are presented in Section 6,
including comparison of the approximation results with simulation. Finally some
conclusions are drawn and areas of further work described.

2 Key Distribution Centre

We now describe the specific problem we seek to model. This is the secure
exchange of secret keys (also known as symmetric keys) using a trusted third
party known as a key distribution centre (KDC). The protocol is illustrated
below, following the description in [10].

�

��

�

�
�

�
�

�
�
���

�
�

�
�

�
��

�
Alice Bob

KDC

1
2

3

5

4

Fig. 1. Key Distribution Scenario

– Alice and KDC share a key KA

– Bob and KDC share a key KB

1. Alice sends request to KDC with nonce N1
2. E{KA} [KS |request|N1|E {KB} [KS|IDA]]

- KS is a session key for Alice and Bob to use.
- Alice can’t decrypt the part encoded with Bob’s key, she can only send it

on.
3. E{KB} [KS |IDA]
4. E{KS} [N2]
5. E{KS} [f(N2)]

where,

– N1 and N2 are nonces (random items of data),
– IDA is a unique identifier for Alice,

46 Y. Zhao and N. Thomas

– E{KA}[X] denotes that the data X is encrypted using the key KA, and
– f(N2) denotes a predefined function applied to the nonce N2, signifying that

Alice has read the encrypted message sent by Bob.

The key features of this protocol are that only Alice can read the message sent
by the KDC (2) as only Alice and the KDC know the key KA. Included in this
message is another message further encrypted with KB, the key shared by Bob
and the KDC. Alice cannot read this message, but instead forwards it to Bob
(3). This message tells Bob that Alice is genuine (i.e. has communicated with
the KDC and displays a correct ID) and informs Bob of the session key; only
Bob can read this message. Alice and Bob now both know the session key KS

and the remainder of the protocol ensures that Bob trusts Alice and the session
key (and Alice trusts Bob).

3 PEPA

In this paper we model the performance of the key distribution centre using
the Markovian process algebra PEPA. This approach has a number of advan-
tages over a direct approach of using Markov chains. As a formal specification,
a PEPA model can be derived automatically from, and compared automatically
with, formal definitions of the protocol we are modelling. Functional properties
of the model, such as deadlock freeness, can also be checked automatically. These
attributes of the model specification are particularly important in the field of
security, where correctness is vital if security properties are to be maintained.
Furthermore, the analysis of the model we are considering here is based on formu-
lating progressive simplified versions of the model. Because of the formal nature
of the specification we can apply formal transformations to the model based on
known concepts of equivalence. Therefore we know that the approximate model
we derive shares certain properties with the original model. In brief, we know,
and can prove, that the approximation is still a valid model of the original pro-
tocol. This would not be possible if we simply chose the approximation by some
expert intuition or arrived at it by some less formal means.

A formal presentation of PEPA is given in [6], in this section a brief informal
summary is presented. PEPA, being a Markovian Process Algebra, only supports
actions that occur with rates that are negative exponentially distributed. Spec-
ifications written in PEPA represent Markov processes and can be mapped to a
continuous time Markov chain (CTMC). Systems are specified in PEPA in terms
of activities and components. An activity (α, r) is described by the type of the ac-
tivity, α, and the rate of the associated negative exponential distribution, r. This
rate may be any positive real number, or given as unspecified using the symbol �.

The syntax for describing components is given as:

(α, r).P | P + Q | P/L | P ��
L

Q | A

The component (α, r).P performs the activity of type α at rate r and then
behaves like P . The component P + Q behaves either like P or like Q, the
resultant behaviour being given by the first activity to complete.

Approximate Solution of a PEPA Model of a Key Distribution Centre 47

The component P/L behaves exactly like P except that the activities in the
set L are concealed, their type is not visible and instead appears as the unknown
type τ .

Concurrent components can be synchronised, P ��
L

Q, such that activities in
the cooperation set L involve the participation of both components. In PEPA
the shared activity occurs at the slowest of the rates of the participants and
if a rate is unspecified in a component, the component is passive with respect
to activities of that type. A

def= P gives the constant A the behaviour of the
component P .

In this paper we consider only models which are cyclic, that is, every deriv-
ative of components P and Q are reachable in the model description P ��

L
Q.

Necessary conditions for a cyclic model may be defined on the component and
model definitions without recourse to the entire state space of the model.

4 The Models

This scheme can be easily modelled for a single pair of clients in PEPA [6] as
follows (Model 1).

KDC
def= (request, �).(response, rp).KDC

Alice
def= (request, rq).(response, �).Alice′

Alice′ def= (sendBob, rB).(sendAlice, �).(confirm, rc).Alice′′

Alice′′ def= (usekey, ru).Alice

Bob
def= (sendBob,�).(sendAlice, rA).(confirm,�).Bob′

Bob′ def= (usekey,�).Bob

System
def= KDC ��

L
Alice ��

K
Bob

Where, L = {request, response}, K = {sendBob, sendAlice, confirm, usekey}.
In Model 1, above, Alice’s behaviour is separated into getting a session key

(Alice), authentication with Bob (Alice′) and using the session key (Alice′′).
Similarly Bob’s behaviour is separated into the key exchange and authentication
with Alice (Bob) and the use of the session key (Bob′). In this model Alice only
requests (and uses) one session key at a time. Thus the model is limited such
that if Alice wishes to start a new session, she must first finish the previous ses-
sion. This observation will be important when considering models with multiple
clients.

48 Y. Zhao and N. Thomas

According to Stallings [10]:

“The more frequently session keys are exchanged, the more secure they
are, because the opponent has less cipher text to work with for any given
session key. On the other hand, the distribution of session keys delays
the start of any exchange and places a burden on network capacity. A
security manager must try to balance these competing considerations in
determining the lifetime of a particular session key.”

In brief, this means there is a trade-off to be achieved between performance and
security in the handling of session keys. In our model (above), this would be
represented by varying the values of ru and rq. If these values are high then keys
are being refreshed more regularly, putting more demand on the KDC and the
network.

In our work we are primarily interested in studying the performance of the
KDC, rather than the network. In [11] we developed three approaches to mod-
elling multiple clients requesting session keys from the KDC. These approaches
all formally represent the same protocol definition and are notionally equivalent
at the syntactic level (they have a form of bisimilarity). However, they are not
isomorphic and hence can give different values for important performance met-
rics. In the most intuitive version, presented in this paper, multiple clients are
manually added using different names with parallel requests and responses al-
lowed; meaning that the KDC can receive (and queue) several distinct requests
before responding to them. A model with N pairs of clients is illustrated in
Figure 2.

This approach can be modelled in PEPA as follows (Model 2).

KDC
def= (request1, �).KDC1 + (request2, �).KDC2

+ · · · + (requestN), �).KDCN

KDC1
def= (response1, rp).KDC + (request2, �).KDCN+1

+ · · · + (requestN , �).KDC2N−1

· · ·
KDC2N

def= (response1, rp/N).KDC2N−N + (response2, rp/N).KDC2N−N+1

+ · · · + (responseN , rp/N).KDC2N−1

Alicei
def= (requesti, rq).(responsei, �).(sendBi, rB).(sendAi, �).

(confirmi, rc).(usekeyi, ru).Alicei , 1 ≤ i ≤ N

Bobi
def= (sendBi, �).(sendAi, rA).(confirmi, �).(usekeyi, �).Bobi

, 1 ≤ i ≤ N

System
def= KDC ��

K
((Alice1 ��

L1
Bob1)|| · · · ||(AliceN ��

LN
BobN)

Approximate Solution of a PEPA Model of a Key Distribution Centre 49

�

�

Alice1

Bob1

� �

�

�

�

Alice2

Bob2

� �

�

�

�

AliceN

BobN

� �

�

	
	

	
	

	
	

	
	

	
	
	

	
	

	
	

	
	

	
		��

�
�

�
�

�
�� �

�
�

�
�
�

��� �
�

�
�

�
�

��� �
�

�
�

�
�

���

KDC

Fig. 2. Diagrammatic representation of a key distribution centre

Where,
K = {request1, response1, · · · , requestN , responseN}

and
Li = {sendBi, sendAi, confirmi, usekeyi}

In Model 2 we introduce the possibility that the KDC is serving multiple
requests from multiple Alices. Each Alice still only makes one request at a time
and each request is served by the KDC (we are not overly concerned here about
the order of service). Note that due to the semantics of the specification events
occur sequentially and not simultaneously. In addition we do not allow batched
requests.

Specific notation in Model 2 is introduced as follows. The subscript j in KDCj

corresponds to a binary representation of the request status of node i, such that
the ith bit is 1 if Alicei is awaiting a response from the KDC and 0 otherwise.
The rate of each responsei action in KDCj is rp divided by the number of
responsei’s enabled.

It is worth observing here that Model 2 is cumbersome to specify; if we want
to consider an extra client that no only needs to be specified as new Alicej

and Bobj components, but also the KDC component needs to be modified to
incorporate the additional behaviours, requestj and responsej.

50 Y. Zhao and N. Thomas

5 Model Simplification and Approximation

Model 2 suffers from the commonly encountered state space explosion problem.
For each Alice (and corresponding Bob) the state space is multiplied by another
6 behaviours, hence the state space is 6N , where N is the number of client
pairs (Alice+Bob). With N = 9 the state space has already grown to over 1
million states; if N is only 5, the solution still involves matrices with over 60
million elements (although admittedly mostly zeros). Even the best distributed
Markov chain solvers generally only tackle state spaces of a few million states at
most. To counter this, and to make the model easier to specify and understand,
we have applied some simplification techniques to derive a form of the model
which gives the same results for key steady state metrics. This approach is based
on the concept known as bisimulation; whereby two models may be said to
be equivalent if any sequence of actions that is possible in one model, has an
equivalent sequence of actions (at the same rate) in the other model (strong
bisimulation requires that equivalent actions have the same name, which is not
the case here). This leads us to an alternative representation of the model as
follows (Model 3).

KDC
def= (request, �).KDC + (response, rp).KDC

Alice
def= (request, rq).(response, �).Alice′

Alice′ def= (sendBob, rB).(sendAlice, �).(confirm, rc).Alice′′

Alice′′ def= (usekey, ru).Alice

Bob
def= (sendBob,�).(sendAlice, rA).(confirm,�).Bob′

Bob′ def= (usekey,�).Bob

System
def= KDC ��

L

(

Alice ��
K

Bob|| . . . ||Alice ��
K

Bob
)

Where, L = {request, response}, K = {sendBob, sendAlice, confirm, usekey}.
Clearly the component Bob is almost redundant, and the sharing for the action

request and its enabling in KDC has no effect on the behaviour of the model.
Hence an even simpler equivalent specification would be (Model 4):

KDC
def= (response, rp).KDC

Alice
def= (request, rq).(response, �).Alice′

Approximate Solution of a PEPA Model of a Key Distribution Centre 51

Alice′ def= (sendBob, rB).(sendAlice, rA).(confirm, rc).Alice′′

Alice′′ def= (usekey, ru).Alice

System
def= KDC ��

response
(Alice|| . . . ||Alice)

This model and the preceding one are clearly isomorphic, i.e. they have equiv-
alent CTMCs with a one-to-one mapping between states and transitions. We can
now apply the well known approximation technique of combining successive in-
ternal actions into a single action with a modified rate. This is equivalent to
lumping states in the underlying Markov chain (Hillston [6] introduced the weak
isomorphism equivalence for exactly this purpose). Thus we obtain the following
simple form of the model (Model 5).

KDC
def= (response, rp).KDC

Alice
def= (response, �).(τ, rx).Alice

System
def= KDC ��

response
(Alice|| . . . ||Alice)

Where rx is given by

rx =
(

1
rq

+
1
rB

+
1
rA

+
1
rc

+
1
ru

)−1

Model 5 is equivalent to a simple closed queueing system with one queueing
station (the KDC) and an exponential delay after service before returning to
the queue. It is a simple matter to write down the balance equations for such a
system.

rpΠi = (N + 1 − i)rxΠi−1 , 1 ≤ i ≤ N

where Πi is the steady state probability that there are exactly i jobs waiting for
a response from the KDC and N is the number of pairs of clients (the number
of instances of Alice in the above PEPA model specification). Thus it is possible
to derive expressions for the average utilisation of the KDC and the average
number of requests waiting for a response.

U = 1 −
[

N !
N

∑

i=0

ρi

(N − i)!

]−1

and,

L = N !(1 − U)
N

∑

i=1

ρii

(N − i)!

where ρ = rx/rp.

52 Y. Zhao and N. Thomas

This approximation is, in fact, an M/M/1/./N queue and the throughput
and average response time are easily computed from the above expressions (see
Mitrani [9] pages 195-197).

T = (N − L)rx

and
W =

N

T
− 1

rx

6 Numerical Results

The approximation is now compared with simulation results for the full model.
The simulation was written in Java using the roulette wheel approach. The sim-
ulation has been verified numerically against the PEPA model using the PEPA
Workbench [3] for small numbers of clients (N ≤ 6). The PEPA Workbench will
not give results for larger models due to problems with performing computa-
tions on the large matrices involved, hence the need for the simulation. Initially
in the experiments which follow, the parameters are set to 1.0 (except ru=1.1 for
numerical computation reasons in the PEPA Workbench) and other parameters
are varied as shown.

In Figure 3 we show the utilisation (of the KDC) varied against the numbers
of client pairs for both the simulation and the approximation for various val-
ues of rp. Increasing the value of rp in this way is equivalent to replacing the
KDC with a faster server. In Figure 4 we show the average response time (av-
erage waiting time plus average service time) of the KDC for the same systems.
Clearly, for both metrics, there is a very close match between the simulation and
the approximation. Hence, in Figures 5 and 6, we show the percentage error,
given as (approximation-simulation)/simulation, for both metrics to provide a
greater insight into the accuracy of the approximation. This shows that the ap-
proximation and simulation agree to within 2% for the utilisation and within 4%
for average response time. In all cases the simulation is run to a terminating con-
dition of a 95% confidence interval. Not surprisingly this becomes increasingly
more difficult to attain as N increases, hence the run-time increases with N .

The most significant difference between the simulation and the approximation
is the time it takes to derive results. The simulation took several weeks to code
and each run takes in excess of 10 hours (we are not claiming this to be the
most efficient simulation possible) whereas the approximation was coded into
MS Excel in less than half an hour and results are almost instantaneous. It
is worth noting that these metrics are based on long run averages, which we
would expect the approximation to be fairly accurate in predicting, particularly
utilisation. If the measure of interest was a transient measure then the lumping
of states might not give such an accurate picture. Furthermore, if we wished to
predict the end to end performance of the protocol, i.e. from request to confirm,
then we would need to perform a slightly different approximation which separates
the usekey action from the other lumped actions.

The results show that there is obviously a benefit from increasing the server
speed at the KDC, but the increase in server speed is not necessarily exactly

Approximate Solution of a PEPA Model of a Key Distribution Centre 53

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8 10 12 14 16 18 20 22

N

U

simulation,rp=1

simulation,rp=2

simulation,rp=3

simulation,rp=4

approximation,rp=1

approximation,rp=2

approximation,rp=3

approximation,rp=4

Fig. 3. Average utilisation varied against the number of client pairs. ru = 1.1, rA =
rB = rc = rq = 1.

0

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14 16 18 20 22

N

W

simulation,rp=1

simulation,rp=2

simulation,rp=3

simulation,rp=4

approximation,rp=1

approximation,rp=2

approximation,rp=3

approximation,rp=4

Fig. 4. Average response time varied against the number of client pairs. ru = 1.1,
rA = rB = rc = rq = 1.

proportional to the increase in capacity. For example, if we have a target max-
imum utilisation of 0.65, then with rp = 1 the KDC can cope with at most
4 client pairs. If we increase the server rate to rp = 3 then the capacity is 10
client pairs, not 12 as we might intuitively expect. However, if we specify the
maximum average response time to be 2, then rp = 1 gives the capacity as 4,
rp = 2 gives 12, and rp = 3 gives the capacity as 18 client pairs. Clearly in
this case the increase in server speed from rp = 1 to rp = 2, or rp = 3, has a

54 Y. Zhao and N. Thomas

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

2 4 6 8 10 12 14 16 18 20 22
N

re
la

tiv
e

di
ff

er
en

ce

rp=1
rp=2
rp=3
rp=4

Fig. 5. Relative error in utilisation of approximation compared to simulation. ru = 1.1,
rA = rB = rc = rq = 1.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

2 4 6 8 10 12 14 16 18 20 22

N

re
la

tiv
e

di
ff

er
en

ce

rp=1
rp=2
rp=3
rp=4

Fig. 6. Relative error in average response time of approximation compared to simula-
tion. ru = 1.1, rA = rB = rc = rq = 1.

significantly greater impact on the client capacity than we might expect. Note
also that, whilst intuitively we may consider that it is possible that a greater
impact could be made by considering multiple KDC severs, we know that for
a simple M/M/k queue it is preferable to have one fast server than two of half

Approximate Solution of a PEPA Model of a Key Distribution Centre 55

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.02 0.03 0.04 0.05

ru

U
rp=1
rp=2
rp=3
rp=4
rp=5

Fig. 7. Average utilisation varied against the rate of session key use, ru rq = rA =
rB = rc = 1, N = 150

0

10

20

30

40

50

60

70

80

90

100

110

120

130

0.01 0.02 0.03 0.04 0.05

ru

W

rp=1
rp=2
rp=3
rp=4
rp=5

Fig. 8. Average Response time varied against the rate of session key use, ru rq = rA =
rB = rc = 1, N = 150

the speed. Clearly therefore we would rather double the speed of the processor,
than double the number of processors at the KDC (although doing both would
clearly be beneficial).

56 Y. Zhao and N. Thomas

In the above experiments the duration for which the session key is used is set
to be approximately the same as the durations for any other action. We have
done this so that we can explore the behaviour of the KDC when it is heavily
loaded, despite only having a small number of client pairs. Clearly this is not
a practical scenario and having established the accuracy of the approximation
we can now go on to consider larger systems with a greater duration of the use
of the session key. Note that although in theory the approximation scales very
well, in practise there can be numerical problems relating to the representation
and manipulation of large factorials, hence in this instance we have restricted
the experimentation to N = 150 (150! ≈ 5.7 ∗ 10262)

Figures 7 and 8 show the utilisation and average response time for various
values of ru and rp when N = 150. When the use rate is low (ru = 0.01)
the performance is good for rp > 2 (in fact the response time for rp = 2 is
more than five times that of rp = 5, although this is not clear in the graph).
However, increasing the use rate has a dramatic effect on both the utilisation
and the average response time. The systems rapidly become saturated, except
rp = 5 (and to a lesser extent rp = 4) which grows more gently. At ru = 0.05
all the systems are saturated (100% utilisation). A similar picture is evident
for the average response time. For rp = 5 the average response time increases
exponentially. However, for rp = 1, where the response time is obviously much
greater, the increase is inversely exponential, i.e. the rate of increase decreases
as ru increases. This is because rp = 1 is already saturated at ru = 0.01 and so
a large number of clients are already spending a long time in the queue awaiting
a response from the KDC. Hence, decreasing the time they use the session key
does not greatly change their overall behaviour (which is already dominated by
queueing). The other cases of 1 < ru < 5 fall between these extremes, with the
saturation point being clearly evident in the plot of the average response time.

7 Conclusion and Further Work

In this paper we have shown how a key distribution centre can be modelled
and analysed using the Markovian process algebra PEPA. The intuitive means
of modelling the protocol is cumbersome and suffers from state space explo-
sion, preventing meaningful analysis with significant numbers of clients. We have
taken two approaches to coping with this problem; first we have implemented
a simulation of the model and secondly we have attempted to approximate the
system behaviour with a much simpler model. The approximation shows good
accuracy of prediction compared with simulation, scales exceptionally well and
is extremely fast to compute.

This study is the first step into looking at performance modelling of a range
of authentication mechanisms using PEPA and simulation. Such a study will
provide a greater understanding in the overhead inherent in these mechanisms
and may possibly identify some means by which accepted mechanisms can be
improved. The next step is to explore the use of ordinary differential equation

Approximate Solution of a PEPA Model of a Key Distribution Centre 57

analysis [7] and stochastic simulation methods from computational systems bi-
ology [1] as an alternative mechanism to coping with the state space explosion
problem. We then seek to apply the lessons learnt to a class of non-repudiation
protocols.

The analysis in this paper demonstrates the rather obvious point that a more
powerful key distribution centre improves the performance. By adding a cost to
the provision of service and a (negative) cost to the time a job spends in the
queue, it would be possible to demonstrate the trade-off in service provision and
compute and optimum service capacity. Potentially we would also be able to use
such a mechanism to set quality of service bounds such that a service could be
guaranteed to be completed within a given time frame with a given probability
if a certain amount of computational power is provided at the KDC.

References

1. Bradley, J., Gilmore, S., Thomas, N.: Performance analysis of Stochastic Process
Algebra models using Stochastic Simulation. In: 20th IEEE International Parallel
and Distributed Processing Symposium. IEEE Computer Society, Los Alamitos
(2006)

2. Buchholtz, M., Gilmore, S., Hillston, J., Nielson, F.: Securing statically-verified
communications protocols against timing attacks. Electronic Notes in Theoretical
Computer Science 128(4) (2005)

3. Clark, G., Gilmore, S., Hillston, J., Thomas, N.: Experiences with the PEPA Per-
formance Modelling Tools. IEE Proceedings - Software 146(1), 11–19 (1999)

4. Dick, S., Thomas, N.: Performance analysis of PGP. In: Ball, F. (ed.) 22nd UK
Performance Engineering Workshop (UKPEW), Bournemouth University (2006)

5. Freeman, W., Miller, E.: An Experimental Analysis of Cryptographic Overhead
in Performance-critical Systems. In: 7th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems (MAS-
COTS), IEEE Computer Society, Los Alamitos (1999)

6. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, Cambridge (1996)

7. Hillston, J.: Fluid flow approximation of PEPA models. In: 4th International Con-
ference on Quantitative Evaluation of Systems (QEST 2005), pp. 33–43. IEEE
Computer Society, Los Alamitos (2005)

8. Lamprecht, C., van Moorsel, A., Tomlinson, P., Thomas, N.: Investigating the
efficiency of cryptographic algorithms in online transactions. International Journal
of Simulation: Systems, Science & Technology 7(2), 63–75 (2006)

9. Mitrani, I.: Probabilistic Modelling. Cambridge University Press, Cambridge
(1998)

10. Stallings, W.: Cryptography and Network Security: Principles and Practice.
Prentice-Hall, Englewood Cliffs (1999)

11. Zhao, Y., Thomas, N.: Modelling secure secret key exchange using stochastic
process algebra. In: Pereira, E., Pereira, R. (eds.) 23rd UK Performance Engi-
neering Workshop, Edge Hill University (2007)

A Model Transformation

from the Palladio Component Model
to Layered Queueing Networks

Heiko Koziolek1 and Ralf Reussner2

1 Graduate School Trustsoft�

University of Oldenburg, Germany
2 Chair for Software Design and Quality

University of Karlsruhe, Germany
{koziolek,reussner}@ipd.uka.de

Abstract. For component-based performance engineering, software
component developers individually create performance specifications of
their components. Software architects compose these specifications to
architectural models. This enables assessing the possible fulfilment of
performance requirements without the need to purchase and deploy the
component implementations. Many existing performance models do not
support component-based performance engineering but offer efficient
solvers. On the other hand, component-based performance engineering
approaches often lack tool support. We present a model transformation
combining the advanced component concepts of the Palladio Component
Model (PCM) with the efficient performance solvers of Layered Queueing
Networks (LQN). Joining the tool-set for PCM specifications with the
tool-set for LQN solution is an important step to carry component-based
performance engineering into industrial practice. We validate the correct-
ness of the transformation by mapping the PCM model of a component-
based architecture to an LQN and conduct performance predictions.

1 Introduction

Although the computational power of modern hardware is constantly increasing,
many IT companies still face serious performance problems in their systems. This
can lead to reduced user satisfaction and high maintenance costs [30].

The increasing complexity of modern software systems makes it hard to
analyse performance properties at low abstraction levels. The idea of component-
based software performance engineering (CBSPE) is to let software architects
reason on the performance properties of their systems during design time at an
architectural level using performance specifications provided by different compo-
nent vendors. This enables them to manage the complexity of the performance
model, to identify performance-critical components, and to avoid poor designs.
� This work is supported by the German Research Foundation (DFG), grants GRK

1076/1 and RE 1674/1-2.

S. Kounev, I. Gorton, and K. Sachs (Eds.): SIPEW 2008, LNCS 5119, pp. 58–78, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Model Transformation from the Palladio Component Model to LQN 59

For component developers, it is not trivial to supply performance specifications
of their components. As components shall be composed and deployed indepen-
dently, component developers cannot make assumptions on how software archi-
tects compose components with others, how components will be deployed, and how
users will execute them. All these factors influence the performance properties of a
component. Therefore, component developers have to supply parametrised speci-
fications, which software architects can adapt to different environments.

Researchers have proposed several approaches with parametrised specifica-
tions to support CBSPE (e.g., [5,9,6]). However, none of these approaches has
reached industrial maturity due to still limited parametrisation concepts and
due to a lack of tool support [16]. The Palladio Component Model (PCM) [4] is
another proposal for CBSPE. It features component performance specification
parametrised for different resource environments, usage profiles, and calls to re-
quired services. There is a discrete-event simulator for performance analysis of
PCM instances, which, however, can be time-consuming for non-trivial systems.

Approaches for CBSPE can build on analytical methods for monolithic per-
formance models, after the software architect has composed the individual com-
ponent performance specifications, and tools have resolved their parametrisa-
tions. A mature monolithic performance model for distributed software systems
with an efficient analytical solver is provided by Layered Queueing Networks
(LQNs) [25]. Although there is an extension for LQNs to support CBSPE [32],
its parametrisation concept is still limited. Therefore, we do not use this exten-
sion in this work.

In this paper, we introduce a fully automated model transformation from PCM
to LQN. Software architects can use this transformation and the connected LQN
solver to assess the performance of a PCM instance. With the PCM as input
model, they can easily change parameter values in the PCM instance and analyse
different settings. Because the LQN solver relies on Mean-Value-Analysis (MVA)
and carries out an approximative performance prediction, it allows quicker per-
formance analysis than running the PCM discrete-event simulator in many cases.

The contributions of the paper are (i) a model transformation from PCM
to LQN, and (ii) a case study, where the transformation helped to analyse the
performance of a component-based system. A part of the transformation (i.e.,
solving parameter dependencies) can be reused for other model transformations.
To the best of our knowledge the transformation in this paper is the first imple-
mented and validated transformation from a component-based modelling lan-
guage to LQNs.

The remainder of this paper is organised as follows: Section 2 surveys related
work in the area of component-based performance engineering and model trans-
formations for LQN. Section 3 briefly introduces the basic concepts of PCM and
LQN. Section 4 describes the two-step model transformation involving the so-
lution of parameter dependencies and the mapping to LQNs. Section 5 presents
a case study applying the transformation on the model of a component-based
system. Section 6 discusses limitations of the transformation, before Section 7
concludes the paper.

60 H. Koziolek and R. Reussner

2 Related Work

The area of software performance engineering (SPE) originates from the pio-
neering work of Connie Smith [26]. Balsamo et al. [1] have surveyed several ap-
proaches for SPE, which use annotated, UML-like design models and transform
them into performance models, such as queueing networks, stochastic process
algebra, or stochastic Petri nets. Becker et al. [3] compare different approaches
for CBSPE.

Several approaches introduce model transformations targeting LQNs. The
source models are annotated UML diagrams [23,8,31,12], Use Case Maps [22],
and CSM [21]. These approaches do not support the specifics of component-based
systems. Grassi et al. [11] have defined the intermediate modelling language
KLAPER, which shall ease model transformations between different component-
based design models and performance models. A KLAPER to LQN mapping is
under development, and the work in this paper could be adapted to incorporate
this mapping. However, the performance annotations in KLAPER so far do not
follow defined semantics, which complicates automatic transformations.

Though some researchers have used LQNs to model component-based systems
(e.g. [28,29]), these approaches create single monolithic models, from which indi-
vidual component specifications cannot be reused for different systems, because
they lack the necessary parametrisation.

Wu et al. [32] have extended LQNs with the Component-based Modeling Lan-
guage (CBML), which adds explicit provided and required interfaces to parts of
LQNs and therefore enables replacing these parts with other LQN parts conform-
ing to the same interfaces. This extension also features a form of parametrisation,
which for example allows adapting the number of thread instances available to
a component. The parametrisation however does not refer to input or output
parameters of a component service, which is supported by the PCM.

Besides LQNs, other performance models have been used to analyse the per-
formance of component-based software systems. Liu et al. [18] focus on EJB-
based systems and have created a benchmark for application servers. Combining
the benchmark results with an application model yields a queueing network,
which allows analysing an application architecture for different workloads. The
performance models created by this approach rely on certain EJB patterns and
are hardly reusable in different settings. Kounev [15] uses Queueing Petri Nets
(QPN) to model the SPEC jAppServer 2004, which consists of several software
components. However, the resulting model is monolithic and cannot be decom-
posed into individual, reusable models for single components.

3 Foundations

3.1 Palladio Component Model

The Palladio Component Model (PCM) is a meta-model for the specification of
component-based software systems and especially targets performance predic-
tions [4]. Besides the specification of software components (according to

A Model Transformation from the Palladio Component Model to LQN 61

Szyperski’s definition [27]) and connectors, it additionally allows modelling hard-
ware resources and resource demands of components. While UML models anno-
tated with the UML SPT profile [19] could be used to model similar information
as in the PCM, the PCM includes more advanced component concepts than
the UML and features a parametrisation concept, which enables independent
modelling by different component developers.

<<CommunicationLinkResource>>
Network2

<<ResourceContainer>>
Database Server

<<ResourceContainer>>
Application Server

C

DBComp1 DBComp2 DBComp3

<<ExternalCallAction>>
method1

<<ExternalCallAction>>
method2

<<ExternalCallAction>>
method3

<<InternalAction>>
innerMethod

<<ResourceDemanding
ServiceEffectSpecification>>

<<GuardedBranch>>
Specification =

P(input2.VALUE<10)

<<GuardedBranch>>
Specification =

P(input2.VALUE>=10)

<<LoopAction>>
Specification =

input3.ELEMENTS

<<VariableUsage>>
ReferenceName = zInput

Type = BYTESIZE

Specification =

input1.BYTESIZE / 3

<<Parametric
ResourceDemand>>
Specification = 350 +

input1.BYTESIZE * 25

Unit = CPU Units

<<ResourceContainer>>
WebServer

A

B

WebForm1 WebForm2

<<Signature>>
void C.do(File input1, int input2, List input3)

<<CommunicationLinkResource>>
Network1

Fig. 1. A simple example PCM Instance

The PCM is divided into several sub-models targeting specific developer roles.
Component developers specify behavioural abstractions of their components and
put them into repositories. Software architects retrieve these specifications dur-
ing design time and compose them to the model of a complete software system.
System deployers provide a model that specifies the hardware environment and
the allocation of components to resources. Finally, domain experts use the PCM
to specify the usage of the system in terms of number of users, user flow, and
input parameters.

As the PCM contains more than 100 meta-classes, we only provide a simple
example for a PCM instance here (Fig. 1) in a UML-like concrete syntax to
give the reader an idea of the PCM’s modelling capabilities (more details in
[4]). The figure’s left hand side contains an example component-based software
architecture (provided by a software architect) and its allocation to hardware
resources (provided by a system deployer).

62 H. Koziolek and R. Reussner

Each component may include an abstract behavioural description for each
of its provided services (specified by the component developer), which is called
Resource Demanding Service Effect Specification (RDSEFF). It specifies the
resource demands of the service and its calls to required services. Fig. 1 depicts
an RDSEFF for the service do of the component C on the right hand side. The
service first calls an external service method1 and then uses the CPU of the
application server (internalMethod). The component developer specifies the
resource demand in an abstract unit (“CPU-Units”), which can be converted
into a timing values once the system deployer has specified the execution time
for a CPU unit. A single internal action can represent a large amount of code in a
single model element, thereby creating an abstraction from the implementation.

In this case, the resource demand is specified including a dependency to the
size of the service’s input parameter input1. Once the domain expert specifies
the size of this input parameter for the given application context (e.g., 1000),
the actual resource demand can be resolved (e.g., 25350 CPU Units). Because of
the parametrisation, the specification can be easily adapted for different usages
and hardware environments (not shown here) if the component is reused. Be-
sides parametrised resource demands, RDSEFFs also allow parametrised branch
transitions, loop iteration numbers, and input parameters to required services as
shown in Fig. 1. The RDSEFF parametrisation allows modelling performance an-
notations in dependency to the data flow between components, whereas in other
approaches (e.g., LQNs) the parametrisation only refers to single components.
There are several extensions for the PCM (e.g., [13,2]) to reflect performance-
relevant influences by the middleware.

The PCM is specified in Ecore from the Eclipse Modelling Framework. There
are several graphical editors for the specification of PCM instances. There is
also a discrete-event simulation for PCM instances called SimuCom [4], which
enables deriving performance metrics such as response times, throughputs, and
resource demands of a complete system model, but can be time-consuming for
large models, because it supports arbitrary distributed service times. Finally,
several reverse engineering tools are under development [7,14], which shall semi-
automatically derive components and RDSEFFs given arbitrary Java code.

3.2 Layered Queueing Networks

Layered Queueing Networks (LQN) [10] are a performance model in the class
of extended queueing networks. Other than plain QNs, LQNs model software
entities and their communication explicitly in a hierarchical structure. Like the
PCM, LQNs target the performance analysis of distributed business informations
systems, but unlike the PCM they do not support independent specification of
individual software components. There is an approximative, analytical solver
based on Mean-Value Analysis (MVA) for LQNs including M/M/n queues [25].

As an example, Fig. 2 shows a simple LQN instance in the standard con-
crete syntax. It is an acyclic graph and consists of processors (circles) and tasks
(parallelograms). Processors model hardware entities such as CPUs, hard disks,
or networks. Tasks model software entities, such as components, application

A Model Transformation from the Palladio Component Model to LQN 63

servers, databases, semaphores, or buffers. Tasks are arranged in a layered hi-
erarchy, where tasks from upper layers may send requests to tasks from lower
layers. Both processors and tasks contain a request queue (not depicted in the
figure), from which they serve waiting requests according to a specific scheduling
discipline (e.g., FCFS or Processor Sharing).

Entry
[10]

WebServer[5]

WebServer
Processor

Entry1
[2]

Entry
[0.05]

Database

Database
Processor

Entry2 Entry3
[0.2]

AppServer
Processor

+

&

A2
[0.5]

A3

[0.3]

A4
[0.09]

A5
[1.2]

A6
[0.002]

A1
[0.01]

ApplicationServer

(0.08)(0.22)(0.7)

(1)
0.850.15

(1)

Fig. 2. A simple example LQN Instance

Each task can contain multiple entries, which model the services provided
by the software entity. Entries either directly specify a resource demand to the
underlying processor of the tasks, or include a control flow graph containing
multiple activities, which issue such demands. Both entries and activities can
also make calls to the entries of tasks on lowers layers of the LQNs. These calls
can be synchronous (i.e., blocking the caller) or asynchronous (i.e., the control
flow of the caller continues immediately after issuing the request).

The control flow graphs for activities support sequences, branches, loops, and
forks. Other than in the PCM, branch probabilities and loop iteration numbers
have to be specified as constant values and cannot depend on input parameters.
Resource demands by activities or entries specify execution times as mean values
of exponential distributions.

If an entry does not include a control flow graph, its execution may consists
of up to three so-called phases, where each phase can request processing from
the underlying processor or call other entries. The implicit semantics of the
first phase is that the caller of the entry containing the phase blocks until it is
finished. The entry then generates a reply for the caller, after which the caller
continues execution. Concurrently, the entry executes the second and third phase

64 H. Koziolek and R. Reussner

asynchronously from the caller. This models a common communication pattern
in distributed systems, which tries to ensure a high responsiveness by returning
control to clients as early as possible.

The top-most tasks in an LQN are called reference tasks. They model clients
and may include open or closed workloads. Open workloads specify an arrival
rate for incoming requests and do not bound the number of requests issued to
the system. Closed workloads specify a bounded number of users circulating in
the system (the user population). After completing execution of all requests, a
user re-enters the system after a given think time.

4 Model Transformation

4.1 Process

The model transformation and solution process from PCM instances to LQN
instances contains multiple steps (Fig. 3). First the different developer roles
specify their parts of the PCM instance. After the domain expert has created
the usage model, the PCM instance is complete and can be checked automatically
for syntactical inconsistencies.

Component

Specification

Component

Specification

PCM

Component

Specifications

PCM

System

Specification

PCM

Allocation

Specification

PCM

Usage

Specification

PCM Instance,

Computed

Contexts

LQN Model
Performance

Indices

Dependency

Solver

PCM2LQNLQNS

LQNSim

<<Component
Developers>>

Composition
(manually)

Allocation
(manually)

Usage Modelling
(manually)

<<Software
Architect>>

<<System
Deployer>>

<<Domain
Expert>>

Fig. 3. Modelling and Transformation Process

The Dependency Solver (DS) takes the complete PCM model as input and
propagates parameter values specified in the usage model through all RDSEFFs,
substituting parameter references in these specifications with the actual val-
ues (Section 4.2). This step creates resource demands, branch probabilities,
and loop iteration numbers without parameter dependencies. Afterwards, the
tool PCM2LQN is responsible for mapping the model to an LQN instance
(Section 4.3) and executing the LQN solver for the performance prediction. The
tool-chain is fully automated after starting the DS and embedded into the PCM
bench.

4.2 Transformation 1: Dependency Solver

The DS combines the sub-models from the different developer roles and removes
the parametrisation from RDSEFF instances, so that they are prepared for a

A Model Transformation from the Palladio Component Model to LQN 65

<<ExternalCallAction>>
method1

<<ExternalCallAction>>
method2

<<ExternalCallAction>>
method3

<<InternalAction>>
innerMethod

<<ResourceDemanding
ServiceEffectSpecification>>

<<BranchProbability>>
Specification = 1.0

<<BranchProbability>>
Specification = 0.0

<<VariableUsage>>
ReferenceName = zInput
Type = BYTESIZE
Specification = 20

<<ResourceDemand>>
Specification = 1233
Unit = ms

<<UsageModel>>
input1.BYTESIZE = 60
input2.VALUE = -2
input3.ELEMENTS = 12

<<ProcessingResource>>
name = CPU
processingRate = 1.5

<<LoopIterations>>
Specification = 12

(a) RDSEFF in Context 1

<<ExternalCallAction>>
method1

<<ExternalCallAction>>
method2

<<ExternalCallAction>>
method3

<<InternalAction>>
innerMethod

<<ResourceDemanding
ServiceEffectSpecification>>

<<BranchProbability>>
Specification = 0.6

<<BranchProbability>>
Specification = 0.4

<<LoopIterations>>
Specification = 48

<<VariableUsage>>
ReferenceName = zInput
Type = BYTESIZE
Specification = 40

<<ResourceDemand>>
Specification = 4785
Unit = ms

<<UsageModel>>
input1.BYTESIZE = 120
input2.VALUE = (-1;0.6)(1;0.4)
input3.ELEMENTS = 48

<<ProcessingResource>>
name = CPU
processingRate = 0.7

(b) RDSEFF in Context 2

Fig. 4. Output of the Dependency Solver

mapping to a performance model. To clarify this process, we will first briefly
describe the PCM context model.

The PCM strictly separates information about the context (i.e., the composi-
tion, allocation, and usage) of a component from its own behavioural specifica-
tion, because this information is unknown to the component developer. Software
architects create a so-called assembly context for each component instance they
compose into an architecture. It stores the component instance’s binding to other
components. There can be multiple assembly contexts for a single component
type in an architecture, as a software architect can use multiple instances of the
same component in the same architecture.

System deployers create a so-called allocation context for each assembly con-
text specifying the component instance’s deployment to a particular hardware
resource. The usage of a component (i.e., the number of invocations and the used
parameter values) only needs to be specified at the system boundaries for com-
ponents directly interacting with users. The domain expert creates a so-called
usage model, which stores this information. The DS then traverses all RDSEFFs
using the binding specification from the assembly contexts and propagates the
parameter values from the usage model through the architecture.

Consider the example in Fig. 4. It depicts the output of the Dependency
Solver after processing the RDSEFF from Fig. 1 in two different contexts using
the usage model and processing resource specification at the top of the figure.

66 H. Koziolek and R. Reussner

0..*
+parameterCharacterisations

0..*
+parameterCharacterisations

+externalCallOutput

0..*0..*
+externalCallInput

1
+output

1
+input

1
+loopAction

0..*
+loopIterations

+branchTransition

1

+branchProbabilities

0..*

1

+assemblyContext +usageContexts0..*

context::
ComputedUsage

context::Computed
UsageContext

context::
LoopIteration

context::Branch
Probability

context::Ex-
ternalCallInput

context::Ex-
ternalCallOutput

context::Input context::Output

pcm:Assembly
Context

pcm:External
CallAction

pcm::
VariableUsage

pcm::Abstract
BranchTransition

pcm::Abstract
LoopAction

+parameterCharacterisations

0..* 0..*
+parameterCharacterisations

+specification

1

+externalCallAction

1

+externalCallAction

1

pcm::Random
Variable

branchProbability:Double

Fig. 5. Computed Usage Context (Meta-Model)

For example, the ResourceDemand of the left-hand side RDSEFF results from
the ParametricResourceDemand (350 + input1.BYTESIZE ∗ 25) seen before in
Fig. 1. The DS has substituted the actual parameter value specified in above’s
usage model (350+60 ∗ 25 = 1850) and divided the expression by the processing
rate from the processing resource (1850/1.5 = 1233).

The PCM allows component developers to specify parameter dependencies
referring to the value, bytesize, length (for collections), or other performance-
relevant properties of a parameter [16]. The dependencies may include arith-
metic expressions (+,-,*,/) on resource demands or loop iteration numbers, and
boolean expressions (=, <, >, ≤, ≥, AND, OR) on branching guards (cf. Fig. 1).

The PCM does not only support characterising parameter values with con-
stant values, but also probability distributions. For example, the domain expert
could specify a.BYTESIZE = IntPMF[(10;0.2) (20;0.3) (30;0.5)] in the us-
age model, meaning that the size of a in bytes is 10 with a probability of 0.2.
Then, solving the parameter dependency for the example (2 * a.BYTESIZE) by
the DS would result in a RandomVariable with the value: IntPMF[(20;0.2)
(30;0.3) (40;0.5)].

Notice that parameter dependencies need not exactly reflect the precise, ac-
tual dependencies given by the code of the component, which is for example
often impractical for large components. A coarse abstraction of the dependency
focussing on the performance impact of a parameter is often sufficient.

The DS stores all solved expressions for parameter dependencies in the so-
called “computed context model”, which is a decorator model for the PCM.
It includes a computed usage context model (meta-model in Fig. 5), which
stores solved expressions for branch probabilities, loop iteration numbers and
input/output parameter values. Furthermore it includes a computed allocation
model (meta-model in Fig. 6), which stores solved expressions for resource de-
mands. These models are separated, because they result from different informa-
tion sources (i.e., the domain expert and the system deployer).

The model traversal by the DS starts with RDSEFFs of components at the
system boundaries. If these RDSEFFs contains calls to other RDSEFFs, the DS
successively also traverses those RDSEFFs. Upon finishing the traversal of an

A Model Transformation from the Palladio Component Model to LQN 67

+randomVariable11+parametricResourceDemand

0..* +resourceDemands

+allocationContexts0..*

context::Com-
putedAllocation

context::Computed
AllocationContext

context::Computed
UsageContext

pcm::Allocation
Context

context::
ResourceDemand

pcm::Parametric
ResourceDemand

pcm::
RandomVariable

1

+usageContext+allocationContext

1

Fig. 6. Computed Allocation Context (Meta-Model)

RDSEFFs, the DS returns to the calling RDSEFF and creates the External-
CallOutput specification of the ComputedUsageContext, which may include a
solved parameter dependency to the return value or output parameter character-
isations specified in the called RDSEFF. The DS traverses each loop body in the
RDSEFF only once, which is sufficient for solving the parameter dependencies.

After the DS has traversed the whole model and created all computed context
models, this decorated PCM instance is ready for the transformation into a
performance model. A more detailed description of the DS can be found in [16].
Although the following only describes the mapping to LQNs, transformations to
other performance models can be applied at this point. For example, there is a
transformation to Stochastic Regular Expressions [17].

4.3 Transformation 2: PCM2LQN

The second transformation PCM2LQN maps a PCM instance decorated with
computed contexts to an LQN instance. This transformation is documented in
detail in [16]. Due to space reasons, this papers describes the mapping with an
example, provides an overview of the complete mapping, and highlights chal-
lenges of the transformation due to semantic gaps between PCM and LQN.

Example. Fig. 7 demonstrates how PCM2LQN maps the RDSEFF from
Fig. 4(b) into an LQN. Each RDSEFF is mapped into an LQN task with a
task activity graph. Although PCM2LQN could map all RDSEFFs of a single
component to a single LQN task with multiple entry activity graphs, this has
not been implemented, as the LQN solvers so far do not support entry activity
graphs.

PCM2LQN transforms each ExternalCallAction into an LQN activity with
zero host demand and a synchronous call to the task representing the called
RDSEFF. The activities A1 and A4 in the example have resulted from this
mapping.

PCM InternalActions model computations by a component service, which
execute on the resources the component is deployed on. Every InternalAction
can contain several ResourceDemands directed at specific resources, such as a

68 H. Koziolek and R. Reussner

<<ExternalCallAction>>
method1

<<ExternalCallAction>>
method2

<<ExternalCallAction>>
method3

<<InternalAction>>
innerMethod

<<ResourceDemanding
ServiceEffectSpecification>>

<<BranchProbability>>
Specification = 0.6

<<BranchProbability>>
Specification = 0.4

<<LoopIterations>>
Specification = 48

<<VariableUsage>>
ReferenceName = zInput
Type = BYTESIZE
Specification = 40

<<ResourceDemand>>
Specification = 4785
Unit = ms

PCM2LQN

+

A2
[0.0]

A3
[0.0]

A4
[0.0]

0.60.4

Entry

A1
[0.0]

+

A5
[0.0]

RDSEFF-do-Task

RDSEFF-doLoop1-Task

RDSEFF-method3-Task

RDSEFF-method1-Task

1

1

1

48

RDSEFF-method2-Task

1

Dummy
Proc

CPU

Dummy
Proc

Dummy
Proc

Dummy
Proc

Dummy
Proc

E1
[0.4785]

E2
[...] AppServerCPUTask

Fig. 7. PCM2LQN Example: Transforming an RDSEFF to LQN fragments

CPU or hard disk. PCM2LQN creates an activity for the InternalAction and
for each ResourceDemand (A2 in the example) and connects them sequentially.

RDSEFFs can reference multiple resources, but LQN tasks can run only on
a single LQN processor. Thus, PCM2LQN converts PCM ResourceDemands to
LQN entries, which are added to the task running on the processor created
for the resource referenced by the ResourceDemand (E1 in the example). The
activities created for the resource demand call these entries synchronously.

For the host execution demand of these entries, PCM2LQN either directly
uses the PCM resource demand specification if is a constant or computes its
expected value if is a probability distribution. This step is necessary as LQNs
only support mean value resource demands. It lowers the accuracy of the model
as information about the distribution gets lost.

The control flow constructs of branch and sequence can directly be mapped
to their counterparts in LQN task graphs. PCM2LQN accesses the computed
usage context for a given RDSEFF to retrieve the branch probabilities (0.4 and
0.6 in the example) and uses them in the task graph.

Although LQN activity graphs support loops, these loops may only contain
a sequence of activities, but not branches or nested loops. PCM Loop bodies
instead allow arbitrary behaviour. Therefore PCM2LQN creates a new LQN task
for each loop body. Within this task, the LQN can include arbitrary behaviour
and model the PCM loop body.

The tasks created for the loop body is called as often as the specified number
of loop iterations (48 in the example). If the number of loop iterations is spec-
ified with a probability distribution, PCM2LQN uses its expected value for the
number of calls to the loop body task.

The tasks created for RDSEFFs and loop bodies run on dummy LQN pro-
cessors, which they do not use. PCM2LQN creates these processors to make

A Model Transformation from the Palladio Component Model to LQN 69

the model valid for the LQN solvers. Only the LQN processors created for
PCM ProcessingResources are actually used by LQN tasks. Their mapping is
straight forward, as PCM2LQN can directly map their processing rates to the
speed-factor of LQN processors, and their scheduling policies to LQN scheduling
policies.

Mapping Overview. Tab. 1 depicts a complete overview of the transformat-
ion. The first column refers to meta-classes from the PCM. The second and third
column refer to the corresponding meta-classes from the LQN meta-model. The
second column contains the main classes of the mapping, and the third column
contains additionally created classes to make the LQN instance syntactically
correct or to model control flow precedence.

In addition to the meta-classes, the values contained in the brackets refer to
attributes of these classes. The table only includes the attributes of a meta-class
if PCM2LQN maps to another value than the default value (documented in [24]),
otherwise the attribute is left out in the table for brevity. For example, for an
Activity of a LQN the default hostDemand is zero, therefore all Activities
without a hostDemand attribute in the table have an implicit hostDemand of zero.

Several LQN classes reference each other using strings, which refer to the name
attribute of other classes. The LQN’s Precedence classes use this mechanism
to connect individual Activities to an activity graph. The table does not in-
clude all reference strings used in the transformation as they add little value to
understanding the transformation.

The mapping for PCM usage models is similar to mapping of RDSEFFs.
With them, domain experts specify user behaviour in terms of workload, scenar-
ios, and calls to RDSEFFs. PCM2LQN maps the included ClosedWorkloads to
LQN reference tasks (i.e., scheduling=ref). Such tasks only emit requests, and
cannot serve requests themselves. The attribute population (i.e., the number
of concurrent users) of the ClosedWorkload is equivalent to the multiplicity at-
tribute of the new reference task. The attribute thinkTime (i.e., the time a user
waits before re-entering a scenario after completing it) is mapped to the LQN
task think time.

PCM OpenWorkloads are also mapped to reference tasks. However, in this
case their think time is 0.0 and their multiplicity is 1 (i.e., the default values).
PCM2LQN transforms the OpenWorkload’s interArrivalTime into a rate us-
ing the expected value of the specified probability distribution. This rate is
used as the open arrival rate for the entry in the newly created reference task.
PCM2LQN maps the rest of the usage model similarly to RDSEFFs, therefore
we omit a detailed description.

In addition to the mappings shown in the example PCM2LQN also supports
mapping RDSEFF ForkActions. They model the invocation of threads and
their concurrent execution. The mapping to LQNs is similar to the mapping for
branches. PCM2LQN uses an AND precedence to create the fork and creates
new tasks for the forked behaviours. After they have finished execution, another
precedence merges the forked control flow together again. So far, the mapping
only supports synchronous forks.

70 H. Koziolek and R. Reussner

Table 1. Transformation PCM2LQN

PCM LQN LQN supplemental
ResourceEnvironment
prs:ProcessingResourceSpecification Processor (scheduling=prs.schedulingPolicy,

speedFactor=prs.processingRate)
Task, Entry

UsageModel
cw:ClosedWorkload Task (scheduling=ref,

thinkTime=expectedValue(cw.thinkTime),
multiplicity=cw.population)

Processor, Entry

ow:OpenWorkload Task (scheduling=ref), Entry
(openArrivalRate=1/expectedValue(ow.interArrivalTime))

Processor

sb:ScenarioBehaviour TaskActivityGraph
elsc:EntryLevelSystemCall Activity(synchCall) Precedence (pre=elsc,

post=elsc.successor)
d:Delay Activity(thinkTime=expectedValue(d.userDelay)) Precedence (pre=d,

post=d.successor)
b:Branch Activity, Precedence(pre=b, postOR=bt_1..n), Precedence

(preOR=bt_1..n, post=b.successor)
bt:BranchTransition ActivityOr(prob=bt.branchProbability)
l:Loop Activity (synchCall, callsMean=expectedValue(l.iterations)) Processor, Task, Entry,

Precedence (pre=l,
post=l.successor)

RDSEFF
rdb:ResourceDemandingBehaviour TaskGraph Processor, Task, Entry
st:StartAction
sp:StopAction ReplyActivity, ReplyEntry
eca:ExternalCallAction Activity(synchCall) Precedence (pre=eca,

post=eca.successor)
ba:BranchAction Activity, Precedence(pre=ba, postOR=abt_1..n), Precedence

(preOR=abt_1..n, post=ba.successor)
abt:AbstractBranchTransition ActivityOr(prob=computedUsageContext(abt).branchProbabi

lity)
la:LoopAction Activity (synchCall, callsMean=

expectedValue(computedUsageContext(l). iterations))
Processor, Task, Entry,
Precedence (pre=la,
post=la.successor)

cia:CollectionIteratorAction Activity (synchCall, callsMean=
expectedValue(computedUsageContext(cia). iterations))

Processor, Task, Entry,
Precedence (pre=cia,
post=cia.successor)

ia:InternalAction Activity(hostDemand=0) Precedence (pre=ia,
post='first prd'), Precedence
(pre='last prd',
post=ia.successor)

prd:ParametricResourceDemand Activity(synchCall), Entry,
PhaseActivity(hostDemand=expectedValue(computedUsage
Context(prd).resourceDemand))

Precedence (pre=prd,
post='next prd')

sva:SetVariableAction
fa:ForkAction, sp:SynchronisationPoint Activity, Precedence(pre=fa, postAND=rdb_1..n),

Precedence (preAND=rdb_1..n, post=fa.successor)
pr:PassiveResource Task(schedDisc=semaphore), Entry (signal), Entry (wait)

aa:AcquireAction Activity(synchCall, dest='wait') Precedence (pre=aa,
post=aa.successor)

ra:ReleaseAction Activity(synchCall, dest='signal') Precedence (pre=ra,
post=ra.successor)

In the PCM, components can have PassiveResources, which can be used to
model semaphores or thread pools. LQNs use special tasks to model semaphores.
These tasks have the scheduling discipline ‘semaphore’ and contain two entries
named ‘wait’ and ’signal’. The first entry allows requesting the semaphore, while
the second entry models returning the semaphore. PCM2LQN creates such a

A Model Transformation from the Palladio Component Model to LQN 71

task for each PassiveResource in the PCM instance. The AcquireAction and
ReleaseActions are mapped to activities with synchronous calls to the ‘wait’
entry or ‘signal’ entry respectively.

Prototypical Implementation. PCM2LQN uses three visitors (implemented
in Java) to traverse the PCM’s ResourceEnvironment, UsageModel, and RDSEFF
models. The navigation between the RDSEFFs is managed by using the assem-
bly contexts and looking up the connected components in the PCM System
specification.

PCM2LQN creates instances of an LQN meta-model in Ecore. This meta-
model has been generated with EMF from the LQN-XML schema provided with
the LQN tools (Version 3.12, cf. [24]). Once the visitors of PCM2LQN have
traversed the whole PCM instance, an object representation of the LQN instance
has been created. Using the XML serialisation of EMF, PCM2LQN then saves
this representation to an XML file, which is the input of the LQN solvers.

5 Case Study

The following case study serves to demonstrate the correctness of the model
transformation introduced in this paper. We have modelled a component-based
software system as a PCM instance and used the Dependency Solver described
in Section 4.2 as well as PCM2LQN described in Section 4.3 to generate an
LQN and run the LQN solvers for performance analysis. Additionally, the case
study points out the benefits of a parametrised, component-based performance
specification as the PCM, which enables model reuse and analysis of the impact
of different usage profiles, hardware resources, and component compositions to
performance.

The case study investigates the so-called “Business Reporting System” (BRS),
which is loosely based on an industrial system. We only present performance
predictions based on the model and do not provide comparisons with measured
data. The validity of LQN performance predictions have been shown in former
studies (e.g., [10]) and are out of scope for this paper. We assume that the PCM
instance of the BRS with its control flow and resource demands reflects the
performance properties of the modelled system well.

The BRS is a 4-tier, web-based system to monitor and manage business data.
On a high abstraction level, it consists of 5 software components (Fig. 8 at
the top). Clients either request business reports or specific entries from the
database via the WebServer. A Scheduler connects the WebServer with an
ApplicationServer. The latter contains a component ReportingEngine, which
manages the creation of reports, and a component Cache, which buffers data from
the database for quick access. Both, the ReportingEngine and the Cache query
the component Database, which stores a configurable amount of entries in its
tables.

Fig. 8 shows PCM RDSEFFs for services of the WebServer, Reporting-
Engine, and Database at the bottom. The whole model consists of nine

72 H. Koziolek and R. Reussner

WebServer

Reporting
Engine

Cache

Scheduler Database

Entries.NUMBER_OF_ELEMENTS = 50000

<<InternalAction>>
demand = 0.03

<<InternalAction>>
demand = 0.25

<<ExternalCallAction>>
IReporting.report

<<ExternalCallAction>>
IReporting.view

P(type ==
„view“)P(type ==

„report“)

<<InternalAction>>
demand =DoublePDF[(0.01;0.05)(0.02;0.05)(0.03;0.9)]

+ 1E-7 * Entries.NUMBER_OF_ELEMENTS

<<InternalAction>>
demand = 1.0

<<InternalAction>>
demand = DoublePDF[(0.28;0.3)

(0.29;0.3)(0.3;0.3)(0.31;0.1)]

<<InternalAction>>
demand = DoublePDF[
(0.025;0.1)(0.03;0.9)]

P(detailedView == false)P(detailedView == true)

<<ExternalCallAction>>
IDB.getAggregatedReport

<<ExternalCallAction>>
IDB.getFullReport

iterations =
requestedEntries.VALUE

<<InternalAction>>
demand = DoublePDF[(0.24;0.3)

(0.25;0.4)(0.26;0.3)]

<<ExternalCallAction>>
ICache.doCacheAccess

iterations = 2

iterations =
requestedEntries.
VALUE

<<RDSEFF>><<RDSEFF>> <<RDSEFF>> getAggregatedReport

<<InternalAction>>
demand = DoublePDF[(0.2;0.1)(0.3;0.6)(0.4;0.3)]
+ 0.000002 * Entries.NUMBER_OF_ELEMENTS

<<RDSEFF>> getFullReport

<<InternalAction>>
demand =DoublePDF[(0.1;0.2)(0.2;0.6)(0.3;0.2)]

<<RDSEFF>> getCachedData

processRequests report

IReporting IReporting

ICache

IDB

Fig. 8. Business Reporting System (Palladio Component Model)

RDSEFFs, some have been omitted for brevity1. The first RDSEFF process-
Requests includes parameter dependencies, which determine branch probabil-
ities according to the probabilities specified in the PCM usage model for the
type of requested services (i.e., report or view). It also contains some constant
resource demands to the WebServer’s CPU.

The second depicted RDSEFF (report) from the ReportingEngine chooses a
branch depending on whether the users request detailed reports or not. Detailed
reports result in longer calls to the database. As the BRS also allows users to spec-
ify the number of entries in the generated reports, the loops in this RDSEFF are
iterated as many times as the number of requested entries. Finally, this RDSEFF
contains resource demands specified as probability density functions (PDF).

The three RDSEFFs on the right hand side of the figure represent services
from the database system and do not include calls to other components. The
resource demands specified in the upper two RDSEFFs depend on the number
of entries specified in the Database. A larger number of entries results in longer
queries. The component developer of the Database has made this relationship
explicit, so that different software architects can adjust the model to their an-
ticipated number of entries in the database.

The full PCM instance of the BRS additionally includes an usage model and
a resource environment model, which are not illustrated here. Network traffic is
considered negligible in the model.

1 The full PCM instance of the BRS system as well as PCM2LQN are available for
download at http://www.palladio-approach.net.

A Model Transformation from the Palladio Component Model to LQN 73

CPU

UsageScenario

Webserver.processRequest

UsgScnLoop

ReportingEngine.report ReportingEngine.view

Scheduler.report Scheduler.view

Cache.doCacheAccess

E1 E2 E3 DatabaseTask

E1 E2 WebServerTask

RE.reportLoop1 RE.reportLoop2

E1 E2 E3 E4 E5 E6 AppServerTask CPU

CPU

Database.getAggregatedReport Database.getFullReport Database.getCachedData

RE.reportLoop3

Fig. 9. Business Reporting System (Layered Queueing Network, Schematic
Illustration)

Running the formerly described model transformations on the PCM instance
of the BRS yields the LQN, schematically depicted in Fig. 9. The illustration
only shows entries including non-zero host demands to the underlying processors,
and only shows processors which are actually used by task. The complete model
contains a processor for each task to make it valid for the solvers. The illustration
also does not display the task activity graphs generated for the RDSEFFs.

Notice, how the loops of the RDSEFFs result in additional tasks and how the
resource demands of RDSEFFs result in LQN entries as described in Section 4.3.
For example, PCM2LQN has mapped the four resource demands of the RDSEFF
process (seen in Fig. 8) to the entries E1-E4 of the AppServerTask in Fig. 9.
PCM2LQN determines the expected values for the probability density functions
specified in the RDSEFFs and uses them in the LQN.

In our performance analysis, we predict the performance of the system for
different usage profiles. This only requires changing the PCM usage model and
not the PCM RDSEFFs, as the dependency solver automatically determines the
branch probabilities, loop iterations numbers and resource demands for a given
usage model. Here, we do not alter other possible parameters of the model, such
as the speed of hardware resources or the composition of the components to keep
the case study managable.

Tab. 2 contains the three usage profiles used for the prediction. Users can
change the type of requests, the number of entries per request, and decide
whether they want detailed reports or not. Additionally, the number of entries
in the database is part of the usage profiles and needs to be specified by the soft-
ware architect. Here, the three usage profiles are not based on specific realistic
settings, and only serve to demonstrate the prediction capabilities of the model.

74 H. Koziolek and R. Reussner

Table 2. Usage Profiles for the Business Reporting System

Usage Profile 1 Usage Profile 2 Usage Profile 3
Type of request 25% report,75% view 40% report, 60% view 10% report, 90% view
Number of requested entries 10 5 7
Detailed reports 20% yes, 80% no 70% yes, 30% no 10% yes, 90% no
Entries in Database 50000 10000 100000

200

250

300

350

400

m
e
(S
ec
on

ds
)

Usage Profile 1

Usage Profile 2

Usage Profile 3

0

50

100

150

0 20 40 60 80 100 120

Re
sp
on

se
Ti

User Population

(a) Response Times

0,2

0,25

0,3

0,35

0,4

eq
ue

st
s/
Se
co
nd

) Usage Profile 1

Usage Profile 2

Usage Profile 3

0

0,05

0,1

0,15

,

0 20 40 60 80 100 120

Th
ro
ug
hp

ut
(R
e

User Population

(b) Throughputs

Fig. 10. Performance Indices Business Reporting System

Running the transformation and the LQN solver for all usage profiles took less
than 5 seconds in each case. We analysed the response time and throughput of the
system for the different usage profile and an increasing user population (Fig.10).
In some cases with a higher user population (> 60 users), the LQN solver did
not converge, so that we used the LQN simulator to obtain the depicted results.
The curves indicate that the system will be saturated for more than 64 users
(usage profile 1), or more than 32 users (usage profile 2), or more than 96 users
(usage profile 3).

6 Limitations

The model transformation introduced in this paper enables solving PCM in-
stances with LQN solvers. It is beneficial for software architects, who can quickly
analyse the performance properties of their design models. The parametrisation
in PCM instances enables them to easily change the modelled usage profile,
hardware environment, or component assembly and assess different design alter-
natives. However, there are still some open issues for the transformation:

– Information Loss: Some information within a PCM instance is lost when
mapping to an LQN. For example, PCM2LQN computes the expected values
of general distribution functions specified in an PCM instance and uses them
in the LQN to specify resource demands and loop iteration numbers. There-
fore, using LQN solvers for performance prediction is not useful if general
distributions functions are of interest.

A Model Transformation from the Palladio Component Model to LQN 75

– Exploiting more LQN constructs: LQNs support more communication
concepts between software entities than the PCM. For example, they allow
asynchronous communication, forwarding of requests, and multiple phases.
It is desirable to extend the PCM in the future to support more of these
concepts, so that a larger number of systems can be analysed.

– Incorporating Intermediate Modelling Languages: KLAPER [11] and
CSM [21] are intermediate modelling languages, which shall ease the imple-
mentation between design-oriented models, such as the PCM, and analysis-
oriented models, such as LQNs. Transformations from these languages to
LQNs are planned, but not yet implemented. Once these transformations
become available, the model transformation should be adapted to incorpo-
rate them.

– Solver Feedback: Mapping PCM instances to LQN instances and running
the solver has been fully automated and integrated into the PCM bench.
However, the current implementation simply prints the textual solver results
to the screen, so that the performance analyst has to interpret them. For the
future, a more sophisticated feedback of the solver results into the PCM
instance would be desirable, so that LQNs become fully transparent for the
analyst.

– Standardised Transformation Language: We have implemented the
both the Dependency Solver and PCM2LQN as ad-hoc Java transformations.
Once engines for standardised transformations languages such as QVT be-
come available, it is desirable to use QVT to implement the transformation.

– Standardised Design Model: Instead of UML, the PCM is a propri-
etary modelling language specifically designed for the performance analysis
of component-based software systems. So far, existing UML models cannot
be reused without manual overhead when specifying a PCM instance. A
transformation from UML models to PCM instances could enable reusing
parts of existing UML models and lower the reservation of using the PCM
in industry.

7 Conclusions

The model transformation introduced in this paper connects efficient perfor-
mance solvers for monolithic software architectures to a component-based per-
formance modelling language. The transformation bridges differences of LQNs
and PCM instances, by for example mapping distribution functions to expected
values and allowing components to access multiple resources. We have embed-
ded the transformation into the PCM bench for modelling and analysing PCM
instances, so that performance analysts can use the LQN solvers for quick per-
formance predictions. While the solvers are more efficient than the current PCM
simulator SimuCom, they only deliver mean-value performance indices instead
of distribution functions.

Having component-based, parametrised performance specifications such as in
the PCM has several benefits. It allows reusing the performance specification in

76 H. Koziolek and R. Reussner

different contexts such as hardware environments, usage profiles and component
assemblies. PCM RDSEFFs shall be stored in public repositories, so that dif-
ferent software architects can incorporate them into their architectural models.
The parametrisation allows the different participating developer roles to model
independently from each other. As RDSEFFs specify resource demands, loop
iteration numbers, and branch probabilities in dependency to parameter values,
it is easily possible to adjust the specification for different usage profiles. This
is usually not possible in monolithic models (e.g., annotated UML diagrams),
where for example the dependency between a branch probability and input pa-
rameters is not explicitly specified.

For the future, we plan to implement the transformation in a standardised
transformation language such as QVT [20]. It is also desirable to map PCM in-
stances into intermediate modelling languages such as CSM [21] or KLAPER [11]
to enable transformation into even more performance models and exploit the
specifics of these models. Another area of improvement is the feedback of the
solver results into the PCM model, so that the performance models become fully
transparent for software architects.

References

1. Balsamo, S., DiMarco, A., Inverardi, P., Simeoni, M.: Model-based performance
prediction in software development: A survey. IEEE Trans. Softw. Eng. 30(5),
295–310 (2004)

2. Becker, S.: Coupled Model Transformations. In: Proc. 7th International Workshop
on Software and Performance (WOSP 2008), ACM Sigsoft (June 2008) (to appear)

3. Becker, S., Grunske, L., Mirandola, R., Overhage, S.: Performance Prediction of
Component-Based Systems: A Survey from an Engineering Perspective. In: Reuss-
ner, R., Stafford, J., Szyperski, C. (eds.) Architecting Systems with Trustworthy
Components. LNCS, vol. 3938, pp. 169–192. Springer, Heidelberg (2006)

4. Becker, S., Koziolek, H., Reussner, R.: Model-based Performance Prediction with
the Palladio Component Model. In: Proc. 6th International Workshop on Software
and Performance (WOSP 2007), pp. 56–67. ACM Sigsoft (February 2007)

5. Bertolino, A., Mirandola, R.: CB-SPE Tool: Putting component-based performance
engineering into practice. In: Crnković, I., Stafford, J.A., Schmidt, H.W., Wallnau,
K. (eds.) CBSE 2004. LNCS, vol. 3054, pp. 233–248. Springer, Heidelberg (2004)

6. Bondarev, E., de With, P., Chaudron, M., Musken, J.: Modelling of Input-
Parameter Dependency for Performance Predictions of Component-Based Embed-
ded Systems. In: Proc. of the 31th EUROMICRO Conference (EUROMICRO 2005)
(2005)

7. Chouambe, L., Klatt, B., Krogmann, K.: Reverse Engineering Software-Models of
Component-Based Systems. In: Proc. of the 12th European Conference on Soft-
ware Maintenance and Reengineering (CSMR 2008), Athens, Greece, IEEE, Los
Alamitos (to appear, 2008)

8. D’Ambrogio, A.: A model transformation framework for the automated building
of performance models from UML models. In: Proc. 5th International Workshop
on Software and Performance (WOSP 2005), pp. 75–86. ACM Press, New York
(2005)

A Model Transformation from the Palladio Component Model to LQN 77

9. Eskenazi, E., Fioukov, A., Hammer, D.: Performance Prediction for Component
Compositions. In: Crnković, I., Stafford, J.A., Schmidt, H.W., Wallnau, K. (eds.)
CBSE 2004. LNCS, vol. 3054. Springer, Heidelberg (2004)

10. Franks, G.: Performance Analysis of Distributed Server Systems. PhD thesis, De-
partment of Systems and Computer Engineering, Carleton University, Ottawa,
Ontario, Canada (December 1999)

11. Grassi, V., Mirandola, R., Sabetta, A.: Filling the gap between design and perfor-
mance/reliability models of component-based systems: A model-driven approach.
Journal on Systems and Software 80(4), 528–558 (2007)

12. Gu, G.P., Petriu, D.C.: From UML to LQN by XML algebra-based model trans-
formations. In: Proc. 5th International workshop on Software and Performance
(WOSP 2005), pp. 99–110. ACM Press, New York (2005)

13. Happe, J., Friedrichs, H., Becker, S., Reussner, R.: A Configurable Performance
Completion for Message-Oriented Middleware. In: Proc. 7th International Work-
shop on Software and Performance (WOSP 2008). ACM Sigsoft (June 2008) (to
Appear)

14. Kappler, T., Koziolek, H., Krogmann, K., Reussner, R.: Towards Automatic Con-
struction of Reusable Prediction Models for Component-Based Performance Engi-
neering. In: Proc. Software Engineering 2008 (SE 2008), LNI, GI (February 2008)
(to appear)

15. Kounev, S.: Performance Modeling and Evaluation of Distributed Component-
Based Systems Using Queueing Petri Nets. IEEE Trans. Softw. Eng. 32(7), 486–502
(2006)

16. Koziolek, H.: Parameter Dependencies for Reusable Performance Specifications
of Software Components. PhD thesis, University of Oldenburg, Germany (March
2008)

17. Koziolek, H., Becker, S., Happe, J.: Predicting the Performance of Component-
based Software Architectures with different Usage Profiles. In: Proc. 3rd Interna-
tional Conference on the Quality of Software Architectures (QoSA 2007). LNCS,
vol. 4880, pp. 145–163. Springer, Heidelberg (2007)

18. Liu, Y., Fekete, A., Gorton, I.: Design-level performance prediction of component-
based applications. IEEE Trans. Softw. Eng. 31(11), 928–941 (2005)

19. Object Management Group (OMG). UML Profile for Schedulability, Performance
and Time (2005) (last retrieved 2008-01-13)

20. Object Management Group (OMG). MOF QVT final adopted specification
(ptc/05-11-01) (2006) (last retrieved 2008-01-13)

21. Petriu, D.B., Woodside, M.: An intermediate metamodel with scenarios and re-
sources for generating performance models from UML designs. Journal of Software
and Systems Modeling 6(2), 163–184 (2006)

22. Petriu, D.C., Woodside, C.M.: Software Performance Models from System Scenar-
ios in Use Case Maps. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.)
TOOLS 2002. LNCS, vol. 2324, pp. 141–158. Springer, Heidelberg (2002)

23. Petriu, D.C., Shen, H.: Applying the UML Performance Profile: Graph Grammar-
Based Derivation of LQN Models from UML Specifications. In: Field, T., Harrison,
P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 159–177.
Springer, Heidelberg (2002)

24. Real-Time and Distributed Systems Group, Carleton University. Layered Queueing
Network Documentation (last retrieved 2008-01-13)

25. Rolia, J.A., Sevcik, K.C.: The method of layers. IEEE Trans. Softw. Eng. 21(8),
689–700 (1995)

78 H. Koziolek and R. Reussner

26. Smith, C.U.: Performance Engineering of Software Systems. Addision-Wesley,
Reading (1990)

27. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-
Oriented Programming. Addison-Wesley, Reading (2002)

28. Ufimtsev, A., Murphy, L.: Performance modeling of a JavaEE component applica-
tion using layered queuing networks: revised approach and a case study. In: Proc.
International Workshop on Specification and Verification of Component-based Sys-
tems (SAVCBS 2006), pp. 11–18. ACM, New York (2006)

29. Verdickt, T., Dhoedt, B., De Turck, F., Demeester, P.: Hybrid Performance Mod-
eling Approach for Network Intensive Distributed Software. In: Proc. 6th Interna-
tional Workshop on Software and Performance (WOSP 2007). ACM Sigsoft Notes,
pp. 189–200 (February 2007)

30. Woodside, M., Franks, G., Petriu, D.: The Future of Software Performance En-
gineering. In: Future of Software Engineering (FOSE 2007), pp. 171–187. IEEE
Computer Society, Los Alamitos (2007)

31. Woodside, M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T., Merseguer, J.: Per-
formance by unified model analysis (puma). In: WOSP 2005: Proceedings of the
5th international workshop on Software and performance, pp. 1–12. ACM Press,
New York (2005)

32. Wu, X., Woodside, M.: Performance Modeling from Software Components. In:
Proc. 4th International Workshop on Software and Performance (WOSP 2004),
vol. 29, pp. 290–301. ACM Press, New York (2004)

Model-Driven Generation of Performance Prototypes

Steffen Becker1, Tobias Dencker2, and Jens Happe3,�

1 FZI Forschungszentrum Informatik Karlsruhe
Haid-und-Neu-Straße 10-14, 76131 Karlsruhe, Germany

sbecker@fzi.de
2 Chair of Software Desgin and Quality (SDQ)

Am Fassanengarten 5, University of Karlsruhe (TH), 76131 Karlsruhe, Germany
dencker@ipd.uka.de

3 Graduate School Trustsoft, University of Oldenburg
University of Oldenburg, 26111 Oldenburg, Germany
happe@informatik.uni-oldenburg.de

Abstract. Early, model-based performance predictions help to understand the
consequences of design decisions on the performance of the resulting system be-
fore the system’s implementation becomes available. While this helps reducing
the costs for redesigning systems not meeting their extra-functional requirements,
performance prediction models have to abstract from the full complexity of mod-
ern hard- and software environments potentially leading to imprecise predictions.
As a solution, the construction and execution of prototypes on the target execu-
tion environment gives early insights in the behaviour of the system under realis-
tic conditions. In literature several approaches exist to generate prototypes from
models which either generate code skeletons or require detailed models for the
prototype. In this paper, we present an approach which aims at automated genera-
tion of a performance prototype based solely on a design model with performance
annotations. For the concrete realisation, we used the Palladio Component Model
(PCM), which is a component-based architecture modelling language support-
ing early performance analyses. For a typical three-tier business application, the
resulting Java EE code shows how the prototype can be used to evaluate the in-
fluence of complex parts of the execution environment like memory interactions
or the operating system’s scheduler.

Keywords: Performance, Prototyping, Model-Driven Software Engineering, Pal-
ladio Component Model.

1 Introduction

The early evaluation of the performance of a software system can reveal bottlenecks
and allows the quality assessment of different design alternatives. Recent research is di-
rected at early, design-time performance predictions using models of the systems under
study [1]. Currently, many approaches focus on automated, model-driven transforma-
tions of annotated UML models into performance models like queueing networks [2].

� This work is supported by the German Research Foundation (DFG), grants GRK 1076/1 and
RE 1674/1-2.

S. Kounev, I. Gorton, and K. Sachs (Eds.): SIPEW 2008, LNCS 5119, pp. 79–98, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

80 S. Becker, T. Dencker, and J. Happe

Solving these models results in performance metrics which reveal possible performance
issues.

While model-driven performance prediction introduces an easy and cost-efficient
way of early design-time performance analyses, the model assumptions and limitations
can result in inaccurate predictions. For example, most approaches disregard memory
consumption and realistic scheduling disciplines especially for multi-core systems. In
addition, they are limited by mathematical assumptions like exponential distributions,
by the amount of states solvable analytically or restricted to mean-value analysis. Be-
cause of this, we favour an approach common in other engineering disciplines where
prediction model results are validated using prototypes deployed in the target hard- and
software environment.

Some approaches already exist for the automatic generation of performance pro-
totypes. Grundy et. al [3] propose a method for the automatic generation based on a
detailed model of the prototype to generate. While this results in detailed performance
metrics, it requires additional modelling effort. Other approaches exist which are not
yet fully automated, e.g. [4,5]. In contrast to this, we aim at a fully-working prototype
generated from an existing design model with performance annotations.

In this paper, we present a transformation of instances of the Palladio Component
Model (PCM) [6,7] into prototypes which can be deployed, executed, and measured
on the target execution environment without additional coding. The PCM is a meta-
model for the specification of component-based software architectures and enables
early design-time performance predictions of a system under study. Components and
their interconnection model the static structure of an architecture. Behavioural spec-
ifications of the components capture the dynamic aspects of a system. They abstract
from the components internal logic and focus on performance relevant aspects, i.e.,
they specify how a component utilises the available resources. The behavioural specifi-
cation includes an abstraction of the architecture’s data flow to reflect the influence of
the systems usage on performance. The PCM’s well-defined meta-model allows easy
transformations for different kinds of performance evaluation. The generated prototype
presented in this paper runs on Java EE and simulates resource demands by executing
resource consuming algorithms such that the time needed on the target hardware corre-
sponds to the time demand specified in a PCM model instance. Note that this approach
requires a PCM model that actually reflects the system under study. The prediction
accuracy of the performance prototype mainly depends on the quality of this model.

To demonstrate our prototype generator, we applied the prototype generation to a
PCM instance of a Management Information System (MIS) introduced by [8]. Our re-
sults show the straight forward generation and deployment of the MIS’s prototype. The
measurements of the deployed prototype reflect the influence of the underlying execu-
tion environment that can hardly be captured by analytical or simulation based method.
This includes the existing but limited speedup of multiple CPU cores, the influence of
the OS scheduler, and the amount of memory accesses. These low level details are diffi-
cult to capture by analytical models since they strongly depend on the actual execution
environment.

The contribution of this paper is a model-driven transformation of abstract perfor-
mance models (PCM instances) to directly executable performance prototypes. The

Model-Driven Generation of Performance Prototypes 81

high-level performance specification includes abstract information on the control flow
and demands to resources, but no information on the actual business logic of the system.
A new, automated mapping of abstract resource demands specified in the PCM (e.g. 10
CPU units or 15 ms) to different load generating algorithms allows the prototype to
emulate the specified processing times. The model of an industrial application called
MIS validates the prototype generation.

This paper is structured as follows. Section 2 highlights related work in the area
of performance prediction, measuring, and prototyping. Section 3 gives a brief intro-
duction to model-driven performance evaluation with the PCM. The mapping of PCM
instances to prototypical Java EE applications is described in section 4. Section 5 gives
details on the method to generate artificial resource demands. A case study presented
in section 6 demonstrates how the generated prototypes help evaluating the perfor-
mance of the system under study. After discussing limitations of our current approach in
section 7, we conclude the paper and highlight options for future work.

2 Related Work

The approach presented in this paper relates to (model-driven) prototype generation and
model-based performance evaluation in general.

Balsamo et al. published a recent survey [2] on early-design time performance eval-
uations usising models of the systems under study. Ongoing research is directed at
model-driven generation of performance prediction models from software design mod-
els, e.g., [9,10,6]. However, as the performance prediction models rely on simplifying
assumptions, the need for prototyping arises [4].

Bardram et al. [11] highlight the importance of architectural prototyping for the
evaluation of quality attributes like performance, availability, testability, modifiability,
etc. They present a conceptual framework and stress the importance of architectural
prototypes for doing trade-off analyses between the mentioned quality attributes. The
presented arguments also motivate our work. We additionally present an automated,
tool-supported approach to generate a performance prototype.

In [12], Avritzer and Weyuker present an approach to capture the resource demands
caused by a running system. Based on the captured information, they generate a pro-
gram issuing a synthetic workload resembling the original one. This program is placed
in different execution environments. Measurements taken there reveal insights into the
performance in the new environments. In contrast, our approach supports early design
time decisions and therefore does not require measurements of an existing system. It
uses workloads and resource demands specified in a PCM instance to generate a perfor-
mance prototype, which allows early performance estimates of the system under study.

Based on the former work, Woodside and Schramm [13] propose an approach closely
related to the one presented in this paper. They use layered queuing network mod-
els [14] to generate synthetic workloads which correspond to the model’s specification.
They aimed at capturing concurrent load and network impact on performance which is
hard to predict with analytical and simulation-based methods. This paper carries on the
ideas of Woodside and Schramm. It improves the generation of performance prototypes
using model-driven techniques and a more sophisticated synthetic resource demand

82 S. Becker, T. Dencker, and J. Happe

generation. Additionally, the PCM allows the performance evaluation of data depen-
dent workloads [15].

In [4], Hu and Gorton introduce architecture prototyping for the evaluation of soft-
ware architectures with a high degree of concurrency. The presented approach uses a
programming language called HL. It yields performance metrics such as resource util-
isation or the schedulability of tasks. However, the HL programs need manual coding
and are not generated from a design model.

The model-driven benchmark generation tool MDABench [16,17] of Zhou, Gorton,
and Liu semi-automatically generates Java EE applications and web service applica-
tions from abstract UML 2.0 specifications. This includes the necessary test data and a
complete load driver. However, the server side of the benchmark still requires manual
interaction as the tool generates only stubs for the business logic.

Denaro et al. [5] propose a method to derive application tests to do early performance
prototyping. They state that middleware and database layers have a major impact on the
performance of an application. As the usage of the middleware is determined by the
application’s business logic, their method aims at generating the stubs for the applica-
tion’s business logic to tests the performance of the middleware. In contrast to Denaro’s
approach, our prototype emphasises hardware and operating system influences, like the
number of CPU cores, the OS scheduler, or the file system implementation. In addition,
Denaro’s approach is not yet automated.

In [3,18], Grundy, Cai et al. present an approach for the generation of fully-working
implementations of client-server applications based on an architecture model of the pro-
totype. The model contains details on the clients requests and workloads, the server’s
services, as well as the used database and middleware technology. As such, it defines
a domain-specific language for the specification of prototypes. In contrast to this, our
approach uses already existing performance models and tries to generate resource de-
mands according to the information already available in the model.

3 Model-Driven Performance Evaluation

Model-driven performance prediction [2] allows software architects to specify per-
formance models in a language specific to their domain. This can be UML models
annotated with performance relevant information (using for instance the UML-SPT pro-
file [19]) or architecture description languages specialised for performance predictions.
To derive performance metrics, the software model is transformed into a performance
model as shown in Figure 1.

Typical models for performance analysis are queueing networks, stochastic Petri nets
or stochastic process algebras. The performance metrics derived from the performance
model should then be translated back into the design model, to allow an easy interpre-
tation for software architects.

The following briefly introduces the Palladio Component Model (PCM) [6,7], an
architecture description language targeting software performance predictions. The PCM
follows the process depicted in figure 1. Section 4 builds upon this description and
provides a mapping into a performance prototype ready for deployment and execution
on a Java EE server.

Model-Driven Generation of Performance Prototypes 83

Software
Model

Performance
Model

Prediction
Metric

- UML + SPT profile
- Use Case Maps
- ADL
- ...

- Queueing Networks
- Stoch. Petri-Nets
- Stoch. Process Algebra
- ...

- Response Time
- Throughput
- Resource Utilisation
- ...

Transform Solve

Feedback

Fig. 1. Model-driven Performance Prediction

The Palladio Component Model
The Palladio Component Model (PCM) is an architecture description language sup-
porting design time performance evaluations of component-based software systems.
Based on its meta-model, different transformations can evaluate the performance of
PCM instances, e.g., by mapping them to a specific simulation [6]. This paper extends
the performance evaluation approach envisioned by the PCM by a model-driven trans-
formation to performance prototypes.

The PCM is divided into several packages. The following gives a brief overview
on the most important packages: the repository package, the assembly package, the
allocation package, and the usage model.

Repository. Repositories store software components and/or their performance spec-
ifications, which are the core entities of the PCM. They have provided and required
interfaces and can be composed to form systems.

Components exist in two types: BasicComponents are components which cannot be
decomposed further while CompositeComponents are composed from other compo-
nents. While disregarding the latter in the reminder of this paper, the former contain an
abstract behavioural specification called Resource Demanding-Service Effect Specifi-
cation (RDSEFF) for each provided service. RDSEFFs describe how component services
use resources and call required services using an annotated control flow graph.
Following Szyperski’s definition [20], a component is a unit of independent deploy-
ment with explicit dependencies only. As a consequence, component specifications
in the PCM are parameterised for their later environment. The parameterisation of a
component’s performance specification covers influences of required services, differ-
ent soft- and hardware environments, as well as different input parameters of pro-
vided services. Similar to UML activities, RDSEFFs consist of three types of actions:
InternalActions, ExternalCallActions, and control flow nodes.

InternalActions model resource demands and abstract from computations per-
formed inside a component. For performance prediction, component developers need
to specify demands of internal actions to resources, like CPUs or hard disks. Demands
can depend on parameters passed to a service or return values of external service calls.

ExternalCallActions represent invocations of a component to services of other
components. For each ExternalCallAction, component developers can specify per-
formance relevant information about the service’s parameters. For example, the size of
a collection passed to a service can significantly influence its execution time, while the

84 S. Becker, T. Dencker, and J. Happe

actual values have only little effect. Modelling only the size of the collection keeps the
specification understandable and the model analysable. Besides input parameters, the
PCM also deals with return values of external service calls.

In the PCM, external service calls are always synchronous calls, i.e., the execution is
blocked until a call returns. This is necessary for considering the effect of return values
on performance.

Control flow elements allow component developers to specify branches, loops, and
forks of the control flow. BranchActions represent ”exclusive or” splits of the control
flow, where only one of the alternatives can be taken. In the PCM, the choice can either
be probabilistic or determined by a guard. In the first case, each alternative has an
associated probability giving the likelihood of its execution. In the latter case, boolean
expressions on the service’s input parameters guard each alternative. With a stochastic
specification of the input parameters provided by the caller, the guards are evaluated to
probabilities. LoopActions model the repetitive execution of a part of the control flow.
A probability mass function specifies the number of loop iterations. For example, a loop
might execute 5 times with a probability of 0.7 and 10 times with a probability of 0.3.
The number of loop iterations can depend on the service’s input parameters.

Assembly. Software architects retrieve component specifications from repositories to
build software systems. The assembly model specifies the interconnection of the sys-
tem’s components. An AssemblyConnector binds a required interface of one com-
ponent to a corresponding provided interface of another component. The assembly
model allows software architects to use the same component multiple times in a sin-
gle software architecture. For example, a generic caching component can accelerate
the access to a network data source and the file system. To reflect the different perfor-
mance properties of a component in different contexts, the PCM defines the so called
AssemblyContext, which holds a component’s context specific information, e.g. its
connection to other components. In a similar way, component developers can build
CompositeComponents.

Allocation. After the creation of a component assembly, the component deployer allo-
cates the components on executing hardware nodes. A ResourceEnvironment (similar
to a UML deployment diagram) models the systems execution environment. It describes
the available processing nodes and their resources like CPUs or hard disk drives. For
each resource, the model contains a specification of its processing speed, e.g., the num-
ber of instructions processable by a CPU in a given time span. A specification of the
networking infrastructure connects the nodes and allows communication. The compo-
nent allocation establishes a link between components and executing hardware nodes.
A component allocated on a specific nodes uses its resources for processing.

Usage Model. With the UsageModel, domain experts describe user interaction with
a software system. A UsageModel contains several UsageScenarios each describing
a different class of users, which differ, for example, in their behaviour or arrival rate.
Domain experts specify the behaviour of each user class comparable to the behavioural
specification of software components (RDSEFF) including Loops, Branches, and calls

Model-Driven Generation of Performance Prototypes 85

to the system under study. They furthermore characterise input parameters of calls to the
system. The specification only contains information relevant for performance analyses,
e.g., the number of elements in an array passed to a service for processing.

4 Performance Prototype Generation

This section presents a mapping of PCM instances to a prototype implementation based
on Enterprise Java Beans (EJB). The prototype reflects the behaviour of the modelled
application with code which causes the same resource demands as specified. For this,
it uses the resource demand specifications in the model and generates a corresponding
load on the resource. If the modelled resource demands and behavioural specifications
characterise the final system correctly, the prototype’s performance reflects the final
system’s performance.

In this paper, we assume that the PCM model reflect the behaviour of the mod-
elled application with sufficient precision. This is a common assumption for all model-
based and model-driven performance evaluation methods. If this assumption cannot
be established by the software architect creating the model then both the analytical or
simulation-based predictions as well as the prototype predictions will be wrong. In this
paper, we additionally assume that the selection of the workload generators reflect the
application’s behaviour.

The mapping of PCM instances to EJBs has to deal with static structures, dynamics
of the system, component allocation, and system usage. Figure 2 gives an overview on
these four parts and their respective elements.

Static Structure. For the static structure, components including their provided and re-
quired interfaces have to be mapped to EJBs. Additionally, component instantiation and
establishing component connections requires the generation of appropriate deployment
descriptors in EJB.

PCM Concept ProtoCom
Interfaces Java Interface
BasicComponents Classes with Simulated SEFF
CompositeComponents Facade Class
AssemblyContext Instance of Component Class
AssemblyConnector Deployment Script
Internal Actions Resource Demand Generator
Call Actions RMI/SOAP Call
Control Flow Java Control Flow
Data Flow Annotations Simulated Dataflow
AllocationContext Deployment Script
Resources [Uses Physical Resources]

Workload UsageModel Workload Driver

Static

Dynamic

Allocation

Fig. 2. Overview on the Prototype Mapping

86 S. Becker, T. Dencker, and J. Happe

Dynamics. The behaviour of single component services as specified in RDSEFFs have
to be mapped to Java code emulating the resource demands of InternalActions and
following the specified control flow (Loops, Branches, etc.). In addition, the perfor-
mance relevant abstractions of the data flow have to be passed on while executing the
generated code. They are needed to determine values for the resource demands, loop
iteration counts, branch conditions, etc.

Allocation. To ease the execution of the generated prototype, build scripts help in build-
ing the application and deploying it on the right hardware nodes. The PCM resource en-
vironment needs no mapping, as we use the real hardware for executing the prototype
instead of the PCM’s hardware model.

Workload. To finally get performance metrics, the mapping generates a workload driver
from the PCM’s usage model. This driver is instrumented with measuring probes which
collect the desired metrics.

The following subsections detail the introduced parts.

4.1 Static Structure

The mapping of PCM components to EJBs shall allow an easy definition of the con-
nectors between the components. As a single component may be used multiple times
in a given architecture each time having different connections to other components, a
component has to keep its references to required components flexible. The following
first describes how to map the components, how to instantiate them, and finally, how to
connect them to fulfil the stated requirement.

In EJB, each component is represented by a Java class annotated with a specific set
of Java annotations. Since the PCM considers components as stateless, the mapping
creates a Java class for each component and annotates it as stateless session bean. The
class has to offer methods which accept references to required components. This pattern
is known as dependency injection [21]. It ensures that the component’s implementing
class remains independent of its actual communication partners.

In the PCM, AssemblyContexts specify the usage of a component in a System. For
each AssemblyContext (referencing a component), the mapping adds an entry to the
generated EJB deployment descriptor, which instructs the EJB framework to create a
new instance of the referenced component. To connect the generated EJB instances, the
mapping adds the necessary references for each AssemblyConnector to the deploy-
ment descriptor, i.e., it specifies which dependencies have to be injected into an EJB.
Consider, for example, two AssemblyContexts, which reference components A and B
and are connected by an AssemblyConnector so that A can call services on B. When
deployed, the generated deployment descriptor instantiates bean A and B and injects
a reference of B into A. For CompositeComponents, the mapping generates a façade
class, which delegates calls to its inner components.

4.2 Dynamics

For the dynamic behaviour of the prototype, the mapping generates code for each ser-
vice offered by a component based on the service’s RDSEFF. The following elaborates

Model-Driven Generation of Performance Prototypes 87

the mapping of a RDSEFF’s data flow elements and then describes the transformation of
its InternalActions, ExternalCallActions and control flow.

Data Flow. To support the data flow annotations available in RDSEFFs, the generated
prototype evaluates the annotations at run-time whenever the value of an annotation is
needed. As annotations used in a RDSEFF may contain variables which are passed to
the RDSEFF when it is called, the generated method takes a list of parameter charac-
terisations plus their respective values. Using this list, the parameter characterisations
which appear in annotations are replaced by their actual values. Based on the parameter
characterisation’s values, the annotation’s result is determined. Annotations may con-
tain stochastic expressions. Thus, the evaluation can involve drawing random numbers
using a pseudo random number generator.

For example, an annotation array.NUMBER OF ELEMENTS∗IntPMF[(0.5; 1)(0.5; 2)]
would be evaluated as follows. First, the generated code looks up the actual value of the
variable array.NUMBER OF ELEMENTS in the list of variables passed to this RDSEFFs.
Afterwards, it evaluates the integer probability function literal which describes a ran-
dom value having a value of 1 in 50% of all cases and 2 in all remaining cases. Finally,
it multiplies both values to get the final result.

InternalActions. For InternalActions, the generated code for each InternalAction
performs three steps. First, it determines the resource demand by evaluating the specifi-
cation of the resource demand copied from the PCM instance as described in the previous
paragraph. The result is the resource demand given in hardware independent units, e.g.,
in abstract CPU work units for a CPU processing demand.

Second, using the type of resource required, the mapping selects a resource demand
generation strategy. For example, for a CPU processing load, a CPU intensive algorithm
is executed. For a demand to a hard drive, another algorithm reads and writes data
to/from a hard drive. Section 5 gives further details on the resource demand generators.

Third, based on the hardware independent resource demand and the type of resource
used to execute the demand, a hardware dependent resource demand is determined, i.e.,
its processing time is computed. Therefore, a hardware independent resource demand
(e.g., 10 CPU Units) is divided by a resource’s ProcessingRate (e.g., 10 CPU Units
per second) to determine the demands hardware dependent execution time (e.g., 1 sec-
ond). The workload generator now creates an artificial workload (e.g., of 1 second) on
the actual resource (e.g., the CPU) as described in section 5.

ExternalCallActions. For ExternalCallActions, the mapping generates code which
calls the specified service on its required interface. The prototype uses the reference to
the required component passed to the component via dependency injection as described
in section 4.1. Additionally, the generated code creates a new list of variables and their
values and passes it to the called service. This requires the evaluation of the respective
annotations in the PCM instance.

Control Flow. For all control flow actions, a corresponding Java construct exists, e.g.,
a Java for-loop for the LoopAction or the if-statement for BranchActions. However,
some of these control flow constructs need to evaluate data flow annotations before they
can be executed. For example, to execute a loop, the generated code has to evaluate the

88 S. Becker, T. Dencker, and J. Happe

number of loop iterations before it can actually execute the loop body for the evaluated
number of iterations.

4.3 Allocation

The prototype mapping generates build scripts, which ease the task of creating deploy-
able JAR archives. In addition, it helps in distributing the compiled binaries to the hard-
ware nodes as specified in the PCM’s Allocation model. After executing the build
scripts, the system is ready to run.

4.4 Workload Driver

The PCM prototype mapping generates a workload driver from the PCM’s UsageModel.
The workload driver mimics the users’ behaviour specified in the UsageModel. It
executes Java threads each of which simulates a single user’s interaction with the system.
If the number of users/threads is high, it is possible to distribute the workload driver on
several machines.

For each UsageScenario of the UsageModel, the workload driver simulates the
arrival of users according to the specified Workload. The workload can either be open
or closed. In the first case users arrive with a specified inter arrival time, execute their
scenario, and finally leave the system. In the latter case, a predefined number of users
execute the UsageScenario, then delay their execution for a specified think time, and
start the whole process again.

The actions executable by a user are similar to the actions available in a RDSEFF.
Because of this, the mapping of these concepts to Java code is analogue to the mapping
of the control flow concepts in RDSEFF like Loops and Branches. However, for calls
the mapping is different, as the workload driver first has to query the Java EE server
running the prototypical application for a reference of the component to be called.

Finally, the PCM prototype mapping generates code to measure the performance of
the prototype. The code records response times of single requests and stores them in a
database to visualise the results graphically after a measurement run.

5 Resource Demand Calibration

The resource demands specified in the model need to be mapped to actual code that
consumes the specified amount of processing time. Therefore, algorithms, like the Fast
Fourier Transform or Fibonacci number computations, shall generate the necessary
load. The prototype framework automatically determines fitting input parameters for
an algorithm to meet the specified resource demands on a given platform. A calibration
identifies the dependency of input parameters and processing time for an algorithm.
Its results define the algorithm’s input parameters during prototype execution. If, for
example, a Fibonacci number generating algorithm shall approximate a resource de-
mand of 32 ms, the calibration determines the amount of Fibonacci numbers to com-
pute during this period, say 253. The prototype uses this value, instead of the specified
time, to generate the resource demand of 32 ms. The calibration measures the execu-
tion time of an algorithm in the single-threaded case, i.e., its (almost) uninterrupted and

Model-Driven Generation of Performance Prototypes 89

undisturbed execution time. During the prototype’s execution, the system may process
multiple requests concurrently. The measured performance metrics reflect influences of
the underlying platform such as resource contention and caching effects. Thus, differ-
ent load generating algorithms can lead to different performance results when executed
concurrently (see Section 6 for an example). The following describes the requirements
and preconditions of the proposed approach and introduces the calibration as well as
the execution of demands in detail. A discussion of open challenges and limitations
concludes this section.

Calibration Requirements. The calibration needs to map specified processing times to
input parameters of an algorithm. It shall be independent of the actual platform and
algorithm, i.e., the calibration shall automatically determine the input parameter of an
algorithm on a given platform to create the specified resource demands. For example, it
may require 43 Fibonacci number computations on one system and 345 on another to
generate a demand of 1 ms. In the scenarios considered in this paper, the times taken by
the demand generating functions range from one millisecond to several seconds. Fur-
thermore, the framework shall support multiple load generating algorithms, since the
different behaviour of algorithms (e.g. memory usage) can affect a prototype’s perfor-
mance. Finally, the calibration of an algorithm’s input parameters shall be fully auto-
mated and transparent to the software architect, to achieve a proper applicability of our
approach.

Calibration Strategy. In order to fulfil the above requirements, we assume that the
load of an algorithm is controlled by a single integer value as input parameter, e.g.
the amount of Fibonacci numbers generated. The execution time of each algorithm
needs to be minimal for 0 and increases monotonically with the input value. For the
Fibonacci number generation, the computation of 0 numbers is (surprisingly) fastest
and its execution time increases the more numbers it computes. Except the need for
a monotonically increasing function, we do not make any further assumptions about
the dependency of the input parameter’s value and the algorithm’s execution time. The
dependency can be linear, exponential or any other monotonically increasing function.

To efficiently approximate resource demands, we first calibrate an algorithm for a
given hard- and software environment. Its input parameters are determined for a set of
predefined execution times. The results provide the basis for load generation during a
prototype’s execution. Since, in general, a prototype can issue arbitrary many different
resource demands, we cannot determine the input parameters for all demands in ad-
vance. Instead, we compose requested demands of smaller, previously calibrated ones.
The following explains the details of the calibration as well as the resource demand
break down.

5.1 Determining the Input Value for a Specific Resource Demand

The calibration method iteratively approximates the best input value to reach a specified
execution time. Therefore, it implements a variant of the bisection method [22], which
is a root-finding algorithm.

We want the execution time of an algorithm execalg(n) with input parameter n to
match the specified target execution time t: execalg(n) = t. Thus, we need to solve

90 S. Becker, T. Dencker, and J. Happe

Input Value [n]Target
Processing
Time [t]

1. Interval

2. Interval

f(nleft)

f(nright)

f(nmean)
tim
e
[f(
n)
]

f(n) = execalg(n) - t

Fig. 3. Abstract illustration of the bisection method

execalg(n)−t = 0. If we define f(n) = execalg(n)−t, the problem becomes a typical
root finding problem with f(n) = 0. Figure 3 illustrates the approximated function
f(n) as well as the bisection method. Provided that all implemented algorithms have
strictly monotonic behaviour, each generated function has got exactly one root point
representing the corresponding iteration parameter to the targeted run time.

To find function f ’s root, the calibration needs to identify two input values nleft and
nright that represent the borders of the first interval. The interval must contain the func-
tion’s root, thus the function must be smaller than zero for the left border (f(nleft) < 0)
and larger for the right one (f(nright) > 0). For the first, the calibration selects zero
(nleft = 0) as initial value, which corresponds to the smallest possible value of f .
To find an value for nright with f(nright) > 0, the calibration executes the algorithm
with a predefined value. If the result for f is smaller than zero, the calibration dou-
bles the input value and re-executes the algorithm. This continues until a value with
f(nright) > 0 is found. For the above example, the interval’s left border is nleft = 0.
Since the generation of zero Fibonacci numbers consumes no time, the functions value
is f(nleft) = −32. The initial value for the right hand side is nright = 200. However,
the functions value f(nright) = −5 is still below zero. Thus, the calibration doubles
the value (nright = 400) and determines the new result, e.g. f(nright) = 48 which is
greater than zero. The initial interval borders are nleft = 0 and nright = 400.

When the borders of the first interval have been determined, the execution of the
bisection method starts. It repeatedly halves the interval, determines the execution time
of the algorithm for the interval’s mean value, and selects the subinterval which contains
the function’s root. The intervals mean value of the example is nmean = 200 with a
value of f(200) = −5. Thus, the bisection method selects n′

left = nmean = 200 as
left and n′

right = nright = 400 as right border of the new interval. Figure 3 illustrates
two iteration steps of the bisection method. The approximation terminates as soon as
the distance of the interval borders is equal or less than 1 millisecond or a predefined
number of iterations is exceeded.

To enable exact input value calibrations, the execution time of an algorithm needs
to be determined accurately. This requires multiple executions of the algorithm during

Model-Driven Generation of Performance Prototypes 91

each iteration of the bisection method. The application of statistical methods removes
outliers and achieves stable results over multiple executions. The next section describes
how a single resource demand can be mapped to multiple pre-calibrated input values of
a load generating algorithm.

5.2 Resource Demand Break Down

The bisection method allows us to determine the input value of an algorithm on a spe-
cific platform for a certain resource demand. However, the process requires several
iterations including multiple executions of the algorithm with different input values. As
we want to keep the calibration effort minimal, we focus on a limited number of re-
source demands whose input parameters are determined during the calibration period.
All other resource demands are composed from the predetermined ones.

During the calibration the algorithm’s input values for 2n with n ∈ {0 . . .10} mil-
liseconds are determined. The results of the calibration are stored in a table which con-
tains approximated parameters associated with their individual execution times. Using
the greedy strategy, an incoming demand is dived into multiple sub-demands of 20 ms
to 210 ms. To generate the workload of the whole demand, each of the sub-demands
is executed sequentially. This allows us to efficiently and automatically approximate
different demand types on arbitrary platforms. For example, a demand of 300 ms is ap-
proximated by the sub-demands: 256 ms + 32 ms + 8 ms + 4 ms. For each sub-demand
the input value of the used algorithm is retrieved from the previous calibration. Ex-
ecuting the algorithm four times with the corresponding input values leads to a total
time consumption of 300 ms. The overhead introduced by the break down and multi-
ple executions is much smaller than 1 ms and can therefore be neglected. This allows
an approximation of any demand for any platform and algorithm. Next, we discuss the
limitations of this calibration approach.

5.3 Discussion

The accuracy of the demand calibration is limited due to disturbances of the underlying
platform, like the garbage collection or operating system services. During the calibra-
tion period, multiple executions of the algorithm in combination with statistical analyses
limit the influence of these disturbances. However, during the run time of a prototype,
these influences can lead to deviations about 6% of requested and actual processing
time. It furthermore requires to execute the prototype multiple times in order to achieve
stable results. The varying execution times are a result of disturbances of the underlying
platform and cannot be totally excluded from the resource demand generation. The use
of longer calibration runs with more executions of the algorithm can increase accuracy,
but cannot totally remove the effect.

On the other hand, it can also be desirable to capture overheads on account of life
cycle activities such as garbage collection. An algorithm can for example mimic object
creations, memory usage, and even trigger stress related effects such as swapping. If
the load generating algorithm is chosen in the right way, it allows software architects
to identify the systems load limits and evaluate the effect of memory usage on soft-
ware performance. However, the amount of memory used cannot be specified within

92 S. Becker, T. Dencker, and J. Happe

the PCM, but would be defined by the algorithm in use. This allows only vague estima-
tions of the actual memory usage of an application.

Please note, that the algorithm itself does not model I/O or CPU bursts of a process.
The RD-SEFFs of the PCM describe such behavioural aspects of an application, which
software architects have to describe explicitly. The following case study demonstrates
the accuracy of our approach as well as the influence of the underlying platform and the
selected algorithm on performance.

It is often desirable to express the execution time of an internal action in dependency
of the system’s state. The PCM models such dependencies with stochastic expressions.
They can for example derive the execution time of an internal action from the number of
concurrently running tasks (load dependent server) or from the number of elements in
an array. During execution, the performance prototype evaluates the stochastic expres-
sions. The result of the evaluation represents the actual execution time and is passed
to the calibrated resource demand, which translates the demand into parameters for the
load generating algorithm.

6 Case Study

To demonstrate the usefulness of our prototype generator and the resource demand
generators for the software architect in validating analytical or simulation-based pre-
dictions, we applied it in a case study to a typical three-tier business information sys-
tem called the Management Information System (MIS). The system has been published
initially by Wu [8] as a case study for the component extension of layered queueing
networks (LQNs) [23]. The system is a reporting application which creates reports of
an organisations’s activities on demand. There are different types of reports having dif-
ferent complexities, e.g., large reports vs. short reports.

We created a PCM model instance for the MIS system loosely based on the sys-
tem specification given in [8]. We focused our model on the application layer and the
database. Figure 4 depicts the static structure of the application and the main use case
considered in the following.

The use case generates small and larger reports. Users request small reports with a
probability of 80% and large reports with a probability of 20%. Given the type of report,
the use case requires different processing times on the CPU of the system. Figure 4
depicts the demands as annotations to the respective actions in the system’s control
flow. The demands are given in seconds, i.e., they depend on the system’s hardware.

For the single user case, the execution times for creating small reports sums up to
1.53 seconds while the generation of large reports sums up to 6.47 seconds. Hence, we
expect these times with the given probabilities as response times from the generated
prototype in cases without resource contention.

For the measurements, we generated the prototype with the mapping described in
section 4. Afterwards, we packaged the resulting EJB code and deployed it on the
Glassfish Java EE application server 1 using the generated deployment scripts. For the
measurements, we did not use a database server as it would have required hand-written
database access code. Instead, we also used the generated resource demands for the

1 https://glassfish.dev.java.net/

Model-Driven Generation of Performance Prototypes 93

Client

Client

WebServer

Scheduler

Reporting
Engine

IReporting

IReporting

IWeb

DBCachea
ICache

Database

IDatabase

WebServer.acceptRequest

Scheduler.dispatch

Reporting.prepare

Reporting.prepareSmall Reporting.prepareBig

DB.getSmall DB.getBig

Reporting.generateReport

Cache.accessCache

2 times

1sec

0.03sec

0.5sec

0.3sec

0.26sec

4sec

0.44sec

0.03sec

80% 20%

Fig. 4. Case Study: Static Architecture and Main Control Flow

database actions. The whole system executed on an Intel Centrino Core2Duo laptop
running under Windows Vista. The generated client application executed 10 warm-up
cycles and took 100 measurements afterwards. We used two different resource gen-
eration strategies. First, we used the calculation of Fibonacci numbers which requires
only limited memory access. As second strategy, we used the sorting of an array which
requires intensive memory access in contrast to the Fibonacci strategy.

Figure 5(a) shows the histogram of the measured response times for a single user
generating workload. The dark grey bars show the response times for the Fibonacci
strategy, the light grey bars show the response times for the sorting strategy. The mean
value for small reports is 1.5 seconds and 6.1 seconds for large reports. Thus, the cal-
ibration described in section 5 works fine for both strategies as the measured response
times closely match the times specified in the model (Error < 6%).

The results given in figure 5(b) show the same experiment for two concurrent users.
The Fibonacci strategy shows a similar response time as in the first experiment, which
was expected as the underlying hardware contains a dual core CPU so that each core
executes a single thread. However, the response times are slightly more delayed (1.65
seconds for small and 6.6 seconds for large reports). This effect becomes even more
significant for the sorting strategy. While the algorithm can execute on both cores, we
assume that the execution has to wait for the memory bus or caches to become available.

94 S. Becker, T. Dencker, and J. Happe

(a) Single Threaded (b) Double Threaded

Fig. 5. Execution of Different Resource Demand Generators

5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Probability Density Function

t: Time [s]

f(
t)

4 Threads Fibonacci
4 Threads Sort

Fig. 6. Execution with 4 Threads

Hence, the results show contention effects and the response time increases. Note, for the
prototype prediction to produce good results the selected algorithm for the generation
of the artificial resource demand has to reflect the real system’s behaviour (see also
section 7). The average response time for small reports is 2.3 seconds and 9.2 seconds
for long reports. Such effects are hard to predict using performance prediction methods
which commonly neglect memory, and caching effects.

Model-Driven Generation of Performance Prototypes 95

Finally, figure 6 depicts the probability density of the response times for four concur-
rent users. As there is now contention for the CPU by both demand generating strate-
gies, the response times increase even further. In this scenario, also the scheduler re-
alisation in the underlying operating system influences the results, which makes the
response time even harder to predict.

To summarize, the case study demonstrated the prototype generation worked, the
accurate calibration results of the resource demand generation strategies, and the use of
the prototype revealed effects, which are hard to predict using model-driven software
performance engineering. While we assume that the major effect discovered in the case
study was the memory bus contention, prototypes can reveal other types of problems
hard to model, like hard disks access, file system effects, caches, CPU architecture,
garbage collection, etc. We plan to use the presented prototype generator to investigate
these effects in future case studies.

7 Discussion

This section summarizes the assumptions and limitations for the transformation of PCM
instances to ProtoCom prototypes.

Validity of the PCM Model Instance: As the ProtoCom mapping relies on its particular
PCM input model, the model has to be valid with respect to the resource demands.
The prototype only provides the means to execute a PCM instance in a more realistic
execution environment but it cannot provide insights for the question whether the PCM
instance’s resource demands are valid with respect to the final application. However, this
information availability by estimates or rough measurements is a common assumption
of all early, design-time performance prediction approaches. If the demands cannot be
provided the proposed approach is unapplicable.

Database Interaction: In many cases, the database is the bottleneck of typical three
tier applications. Using only resource demands and workload strategies which execute
a certain mix of database reads and writes to cause a load similar to the one specified
in the PCM model might not reflect the database’s internal concurrent processing ad-
equately. This is especially true if the mix is not representative to the mix in the final
application. In such cases, manual written code is needed for more precise predictions.
Nevertheless, you only have to write such code if the database is the bottleneck and if
the database’s response behaviour is highly dependent on the application’s request mix.
A more detailed investigation of the database issue will be performed in the future.

Choosing the Right Load Generation Strategy: Picking the right resource demand sim-
ulation strategy is crucial for the results to be realistic as explained in the previous
section. Currently, there is no guidance for the user helping him to choose the right one.
Additionally, ProtoCom’s implementation is limited to a global selection of a strat-
egy per ProcessingResourceType. However, different resource demands in different
InternalActions may be better reflected by different strategies. These improvements
are subject to future work.

96 S. Becker, T. Dencker, and J. Happe

System External Calls: The code mapping generates only mock stubs for system ex-
ternal services. It is desirable for a prototype to exchange the stub with code calling
the real service. However, this also implies specifying parameter values when needed
in these calls (see next list item).

No Realistic Parameter Passing: ProtoCom relies on PCM’s abstraction from the real
data and uses parameter characterisations instead. However, this has several drawbacks.

First, the network load is not realistic, as ProtoCom transmits parameter character-
isations instead of the parameters of the real application. In cases where both differ
significantly, ProtoCom’s results may be of less precision. As a remedy, in future ver-
sions of ProtoCom a network load bytesize estimation can help. If the estimation results
in a larger bytesize than the size of the parameter characterisations, an additional ran-
dom payload could be added to the transmitted packages. However, this does not help
if the estimated bytesize is smaller than the serialised simulated stack.

Second, it is difficult to call system external services like database queries if this
involves parameter passing. In this case, the stub generated for system external services
needs manual adjustment and test data has to be used instead of realistic parameter
values.

Costs: We assume that the PCM model used to generate the prototype has been built as
part of a simulation-based or analytical analysis. We further assume that the prototype
is only generated for those instances which the analyses classified as feasible keeping
the additional costs low. However, a detailed study of the overall return-on-invest (ROI)
is subject to future work.

8 Conclusions

This paper presented a mapping of instances of the Palladio Component Model (PCM)
to a prototype implementation which is readily executable on a Java EE application
server. The generated application’s behaviour with respect to the resource demands
needed during execution is the same as specified in the PCM instance. We gave details
on a strategy to calibrate the resource demand generators to the underlying hardware. A
case study demonstrates that the mapping works and the results gained demonstrate that
effects hard to predict on the model level can be revealed using the generated prototype.

The mapping presented in this paper helps software architects to access the per-
formance of created architecture designs under more realistic conditions compared to
performance analysis models which have to rely on simplifying assumptions. Due to
a model-driven approach, the time needed to generate and execute the prototype is re-
duced to a minimum. However, the drawback is the time spent to wait for real measure-
ments to be taken.

Future work is directed at generating more realistic network and hard-disk demands.
For the network demands, the prototype mapping should evaluate the PCM annotations
for the bytesizes of the transferred packages and simulate this by sending packages of
appropriate length. For hard disks, several different resource generation strategies are
needed which generate a different mix of read and write transactions which additionally
vary in size.

Model-Driven Generation of Performance Prototypes 97

Acknowledgements

We like to thank the members of the Chair of Software Design and Quality (SDQ) at
the University of Karlsruhe (TH) for their valuable discussions and thorough review of
the contents of this paper.

References

1. Smith, C.U., Williams, L.G.: Performance Solutions: A Practical Guide to Creating Respon-
sive, Scalable Software. Addison-Wesley, Reading (2002)

2. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-Based Performance Prediction
in Software Development: A Survey. IEEE Transactions on Software Engineering 30(5),
295–310 (2004)

3. Grundy, J., Cai, Y., Liu, A.: Generation of Distributed System Test-beds from High-level
Software Architecture Descriptions. In: Proceedings of the 2001 IEEE International Confer-
ence on Automated Software Engineering, San Diego, CA (2001)

4. Hu, L., Gorton, I.: A performance prototyping approach to designing concurrent software
architectures. In: Proceedings of the 2nd International Workshop on Software Engineering
for Parallel and Distributed Systems, pp. 270–276 (1997)

5. Denaro, G., Polini, A., Emmerich, W.: Early performance testing of distributed software
applications. In: SIGSOFT Software Engineering Notes, vol. 29, pp. 94–103. ACM Press,
New York (2004)

6. Becker, S., Koziolek, H., Reussner, R.: Model-based Performance Prediction with the Palla-
dio Component Model. In: Proceedings of the 6th International Workshop on Software and
Performance (WOSP2007), ACM Sigsoft (2007)

7. Reussner, R.H., Becker, S., Koziolek, H., Happe, J., Kuperberg, M., Krogmann, K.: The
Palladio Component Model. Interner Bericht 2007-21, Universität Karlsruhe (TH), Faculty
for Informatics, Karlsruhe, Germany (2007)

8. Wu, X.: An Approach to Predicting Performance for Component Based Systems. Master’s
thesis, Carleton University (2003)

9. Petriu, D.C., Wang, X.: From UML description of high-level software architecture to LQN
performance models. In: Münch, M., Nagl, M. (eds.) AGTIVE 1999. LNCS, vol. 1779, pp.
47–63. Springer, Heidelberg (2000)

10. Cortellessa, V., Di Marco, A., Inverardi, P.: Integrating Performance and Reliability Analy-
sis in a Non-Functional MDA Framework. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007.
LNCS, vol. 4422, pp. 57–71. Springer, Heidelberg (2007)

11. Bardram, J.E., Christensen, H.B., Corry, A.V., Hansen, K.M., Ingstrup, M.: Exploring quality
attributes using architectural prototyping. In: Reussner, R., Mayer, J., Stafford, J.A., Over-
hage, S., Becker, S., Schroeder, P.J. (eds.) QoSA 2005 and SOQUA 2005. LNCS, vol. 3712,
pp. 155–170. Springer, Heidelberg (2005)

12. Avritzer, A., Weyuker, E.J.: Deriving Workloads for Performance Testing. Software–Practice
and Experience 26(6), 613–633 (1996)

13. Woodside, C.M., Schramm, C.: Scalability and performance experiments using synthetic
distributed server systems. Distributed Systems Engineering 3, 2–8 (1996)

14. Rolia, J.A., Sevcik, K.C.: The Method of Layers. IEEE Transactions on Software Engineer-
ing 21(8), 689–700 (1995)

15. Koziolek, H.: Parameter Dependencies for Reusable Performance Specifications of Software
Components. PhD thesis, University of Oldenburg (2008)

98 S. Becker, T. Dencker, and J. Happe

16. Zhu, L., Liu, Y., Gorton, I., Bui, N.B.: Customized Benchmark Generation Using MDA. In:
WICSA 2005: Proceedings of the 5th Working IEEE/IFIP Conference on Software Architec-
ture, Washington, DC, USA, pp. 35–44. IEEE Computer Society, Los Alamitos (2005)

17. Zhu, L., Gorton, I., Liu, Y., Bui, N.B.: Model Driven Benchmark Generation for Web Ser-
vices. In: SOSE 2006: Proceedings of the 2006 International Workshop on Service-Oriented
Software Engineering, pp. 33–39. ACM, New York (2006)

18. Cai, Y., Grundy, J., Hosking, J.: Experiences Integrating and Scaling a Performance Test Bed
Generator with an Open Source CASE Tool. In: ASE 2004: Proceedings of the 19th IEEE
international conference on Automated software engineering, Washington, DC, USA, pp.
36–45. IEEE Computer Society, Los Alamitos (2004)

19. Object Management Group (OMG): UML Profile for Schedulability, Performance and Time
(2005)

20. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-Oriented Pro-
gramming, 2nd edn. ACM Press and Addison-Wesley, New York (2002)

21. Fowler, M.: Inversion of control containers and the dependency injection pattern (2004) (Last
retrieved 2008-01-06)

22. Burden, R., Faires, J.: Numerical Analysis. PWS Publishing Co., Boston (1988)
23. Wu, X., Woodside, M.: Performance Modeling from Software Components. SIGSOFT

Softw. Eng. Notes 29(1), 290–301 (2004)

SCALASCA Parallel Performance Analyses

of SPEC MPI2007 Applications

Zoltán Szebenyi1,2, Brian J. N. Wylie1, and Felix Wolf1,2

1 Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Germany
2 Aachen Institute for Advanced Study in Computational Engineering Science,

RWTH Aachen University, Germany
{z.szebenyi,b.wylie,f.wolf}@fz-juelich.de

http://www.scalasca.org/

Abstract. The SPEC MPI2007 1.0 benchmark suite provides a rich
variety of message-passing HPC application kernels to compare the per-
formance of parallel/distributed computer systems. Its 13 applications
use a representative cross-section of programming languages (C/C++/
Fortran, often combined) and MPI programming patterns (e.g., block-
ing vs. non-blocking vs. persistent point-to-point communication, with
or without extensive collective communication). This offers a basis with
which to examine the effectiveness of parallel performance tools using
real-world applications that have already been extensively optimized and
tuned (at least for sequential execution), but which may still have par-
allelization inefficiencies and scalability problems. In this context, the
Scalasca toolset for scalable performance analysis of large-scale parallel
applications, which has been extended to distinguish iteration/timestep
phases, is evaluated with this suite on an IBM SP2 ‘Regatta’ system, and
found to be effective at identifying significant performance improvement
opportunities.

Keywords: Parallel/distributed systems; Benchmark suite; Perform-
ance measurement & analysis tools; Application tracing & profiling.

1 Introduction

Various parallel performance tools studies have considered benchmark suites,
such as evaluation of the Vampir trace collection and visualization toolset with
the 13 applications of the SPEC MPI benchmark suite [1,2,3,4] and the ompP
profiler with the 11 applications of the SPEC OpenMP benchmark suite [5].
Such tools provide in-depth analyses that offer insight into performance and
scalability problems indicated by whole execution measurements [6,7]. While
tools that aggregate and summarize measurements during execution readily han-
dle long-running complex applications, those that rely on trace collection and
analysis are not so fortunate, since trace sizes grow proportionately with the
length of measurement (in addition to the orthogonal dimensions of the number
of processes/threads, density of traced events and number of metrics associated
with each event).

S. Kounev, I. Gorton, and K. Sachs (Eds.): SIPEW 2008, LNCS 5119, pp. 99–123, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

100 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

The open-source Scalasca toolset [8,17] addresses these scalability issues
with a compound approach consisting of flexible measurement configuration (in-
cluding filtering), runtime summarization of measurements during execution, and
event trace collection matched with a replay-based trace analysis that exploits
the parallelism and distributed-memory resources of the target system [9,10].
From an initial summarization measurement of a fully-instrumented applica-
tion, an appropriate list of user functions to filter can be determined and spec-
ified in subsequent measurements. After verifying that the filter produces an
accurate summary measurement (without undue dilation), and that a resulting
trace won’t be so excessively large as to require highly disruptive intermediate
buffer flushing, it can be used for a tracing experiment. Without recompilation or
reinstrumentation of the application, straightforward reconfiguration of the mea-
surement runtime system allows traced events to be buffered until measurement
completion, after which the trace analyzer replays them in parallel to automat-
ically calculate a rich set of execution performance properties. Both runtime
summary and postmortem trace analysis use a common report format, allowing
them to be examined with the same interactive analysis report explorer. The
library for reading and writing the XML reports also facilitates the development
of utilities which process the reports in various ways, such as the extraction of
measurements for each process or their statistical aggregation, for the generation
of timeline charts and metric graphs, respectively.

This paper presents Scalasca measurements and analyses of Version 1.0 of
the SPEC MPI2007 benchmark suite application kernels on an IBM SP2 ‘Regatta’
system, with particular attention given to the scalability of the applications and
the Scalasca toolset itself, and examination of performance variation between
processes and different timesteps/iterations of the applications’ executions.

2 Experiment Configuration

2.1 SPEC MPI2007 1.0 Benchmark Suite

Version 1.0 of the SPEC MPI2007 benchmark suite [1,2] was released in June
2007 to provide a standard set of MPI-based HPC application kernels for compar-
ing the performance of parallel/distributed systems’ hardware, operating system,
MPI execution environment and compilers. The initial release includes 13 appli-
cations and a ‘medium-sized’ reference dataset (MPIm2007) for benchmarking
runs requiring up to 2GB of memory per process and configurable for up to 512
processes.

Table 1 summarizes the 13 applications of the MPI2007 suite, showing that
they derive from a wide variety of subject areas and are implemented using a
representative cross-section of programming languages (C/C++/Fortran, often
combined). From the MPI usage breakdown in the table, it can be seen that
a variety of MPI functions are used at many locations (‘sites’) in the source
code, however, performance analysis can concentrate on the smaller number
of communication and synchronization functions (shown as c&s/used ‘funcs’)

SCALASCA Parallel Performance Analyses of SPEC MPI2007 Applications 101

Table 1. SPEC MPI2007 1.0 applications’ coding and subject area

Program MPI
Application code language LOC funcs sites paths Application subject area

104.milc C 17987 9/18 51 111 Lattice quantum chromodynamics
107.leslie3d F77,F90 10503 8/13 43 12 Combustion dynamics
113.GemsFDTD F90 21858 9/16 237 21 Computational electrodynamics
115.fds4 F90,C 44524 8/15 239 8 Computational fluid dynamics
121.pop2 F90 69203 11/17 158 173 Oceanography
122.tachyon C 15512 8/16 17 8 Computer graphics: ray tracing
126.lammps C++ 6796 12/25 625 41 Molecular dynamics
127.wrf2 F90,C 163462 7/23 132 62 Numerical weather prediction
128.GAPgeofem F77,C 30935 8/18 58 13 Geophysics finite-element methods
129.tera tf F90 6468 9/13 42 17 Eulerian hydrodynamics
130.socorro F90 91585 11/20 155 147 Quantum chemistry
132.zeusmp2 C,F90 44441 11/21 639 85 Astrophysical hydrodynamics
137.lu F90 5671 10/13 72 24 Linear algebra SSOR

and the distinct program call-paths on which they are actually executed during
benchmark runs (‘paths’).

Table 2 tallies the MPI functions used by 32-way benchmark executions, and
shows that a similarly diverse range of MPI programming patterns are imple-
mented, e.g., blocking, vs. non-blocking vs. persistent point-to-point communi-
cation, with or without extensive collective communication, etc. (SPEC rules
allow only MPI parallelization, so auto-parallelization capabilities of compilers
must be disabled, at least in this initial version of the benchmark suite.) The
suite therefore provides a comprehensive test, both for MPI benchmarking pur-
poses, but also for examining the effectiveness of parallel performance tools with
real-world applications.

2.2 IBM SP2 Regatta p690+ System

The John von Neumann Institute for Computing ‘JUMP’ system [11] hosted by
Jülich Supercomputing Centre consists of 41 IBM SP2 p690+ frames, each with
16 dual-core 1.7GHz Power4+ processors and 128GB of shared main memory,
connected via IBM High Performance Switch. At the time measurements were
made, the system was running AIX 5.3, with IBM’s POE 4.2 MPI and GPFS
filesystem, and use of compute nodes managed via LoadLeveler.

The available IBM XL compiler suites (versions 7.0/8.0 for C/C++ and
9.1/10.1 for Fortran) were unable to compile and/or link some of the SPEC
MPI2007 applications when the build was configured using the specification
provided for them with the benchmark distribution. In such cases, aggressive
optimization options were progressively removed until a viable application exe-
cutable was produced. Full optimization of the code and run-time environment
were neither essential nor particularly desirable for our purposes, as the study

102 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

Table 2. MPI function calls used by 32-way SPEC MPIm2007 executions on JUMP

Irecv Isend Recv Send Wait Waitall Waitany

104.milc 359340 359340 718680
107.leslie3d 3201600 3201600 320160
113.GemsFDTD 3316 3316
115.fds4 35271 35271 151264
121.pop2 558007700 558007700 319663712
122.tachyon

126.lammps 196544 9152 205696 196544
127.wrf2 6508380 10106 6518486 6508380
128.GAPgeofem 6099876 6099876 1404288
129.tera tf 1989504 360 1989864 1989504
130.socorro 3286178 3286178 3286178
132.zeusmp2 845056 845056 249888
137.lu 19000 7600320 7619320 19000

Sendrecv Recv init Send init Start Startall Testsome Scan

113.GemsFDTD 1240000
122.tachyon 16158 16158 6536 1 223
126.lammps 32

Allgather Allgatherv Allreduce Barrier Bcast Gather Reduce

104.milc 17700 62 122
107.leslie3d 140832 1088 64
113.GemsFDTD 160 292000 128
115.fds4 303040 320 8512
121.pop2 26080640 8640 9664
122.tachyon 32 32
126.lammps 1696 64 1888
127.wrf2 67488
128.GAPgeofem 2016224 352
129.tera tf 60352 15520 1184
130.socorro 512 7936 37536 9696 1088
132.zeusmp2 12864 96 1280 64
137.lu 224 32 288

Group
Cart Comm Comm Comm Comm Comm range
create split create free dup group incl

104.milc 32
113.GemsFDTD 32
121.pop2 96 96 96
126.lammps 32 32
128.GAPgeofem 32
130.socorro 224
132.zeusmp2 32 32
137.lu 32

SCALASCA Parallel Performance Analyses of SPEC MPI2007 Applications 103

Fig. 1. SPEC MPIm2007 1.0 benchmark execution times with different numbers of
processes on the IBM SP2 system ‘JUMP.’ Eight of the benchmarks (shown with dashed
lines) have good speedup, up to 1024 processes when supported by the benchmark
and 512 processes otherwise. The remaining five benchmarks (shown with solid lines)
have clear scaling problems. 126.lammps uses a maximum of 140 processes (idling
any excess provided) and therefore shows no significant speedup beyond 128 processes.
130.socorro and 115.fds4 both show good speedup to 512 processes, before respectively
having small and significant slowdowns. Finally, 121.pop2 only scales to 256 processes
before slowing down and 113.GemsFDTD only to 128 processes before its dramatic
performance breakdown.

is more focussed on ‘typical’ application performance in a representative HPC
environment than benchmarking.

Figure 1 shows a graph of the benchmark execution times with different
numbers of processes, on a log–log scale, from which the scalability of each
benchmark can be determined. To reduce the impact of variability in run times
(due to non-dedicated use of the communication switch and filesystem in the
production configuration of the JUMP system), the best run time of several
measurements is taken although this is contrary to the SPEC benchmark rules.
(Including confidence intervals in the graphs and tables would be appropriate in
a comprehensive study, however, these have been omitted to reduce unnecessary
clutter and clarify the underlying behaviour.)

While around half of the benchmarks scale well, it is clear that certain others
have very limited scalability, before no further speed-up is possible or perfor-
mance degrades unacceptably. Although no tuning has been done for JUMP, and
measurements were taken on a non-dedicated production system, from review of

104 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

published benchmark results [1] the same scalability limitations are seen to be
common to specially ‘tuned’ benchmark measurements on dedicated systems.

Of course, analyzing the performance of optimally-tuned applications that
scale perfectly has much less value than identifying potential opportunities for
improvement of applications with problems, and is key to producing better per-
forming and more scalable applications.

2.3 SCALASCA Toolset

Scalasca is an open-source toolset for scalable performance analysis of large-
scale parallel applications [8,17] developed by Jülich Supercomputing Centre in
conjunction with the University of Tennessee. Version 1.0 includes integrated
runtime measurement summarization and selective event tracing [9] with au-
tomatic trace analysis based on parallel replay [10], to ensure scalability for
long-running and highly-parallel MPI, OpenMP and hybrid applications.

When the Scalasca instrumenter is prepended to each application compile
and link command, it produces fully-instrumented executables without modify-
ing or inhibiting compiler optimizations. This exploits capabilities for function
entry and exit instrumentation provided by most (but not all) modern compilers,
and the standard PMPI library interposition interface. A source preprocessor is
also provided for OpenMP pragma/directive and annotated region instrumenta-
tion (though not used in this work). Manual annotation of significant code re-
gions (e.g., initialization) can also be done with a macro-based user API, which
has been extended for annotating repetitive phases (such as solver iterations or
time-steps).

Scalasca measurement collection and analysis is performed by a nexus that
is also prefixed to the normal application execution command-line, whether part
of a batch script or interactive run invocation. Experiments with an instrumented
executable can be configured to collect runtime summaries and/or event traces
(optionally including hardware counters), with the latter traces automatically
analyzed with the same number of processes as used for measurement. Both
summary and trace analyses are generated in the same profile format, which
can be interactively explored with the Scalasca analysis report examiner GUI
(shown in Figures 10&11). Command-line tools are also provided for processing
analysis reports, e.g., to produce filters containing lists of functions to ignore
for improved measurement configuration, and new prototype tools are being
developed for graphing and charting metrics calculated for repetitive phases.

Table 3 shows the SPEC MPIm2007 application execution characteristics de-
termined from Scalasca runtime summarization experiments. Application pro-
grams are seen to typically consist of hundreds to thousands of global timesteps
or solver iterations, with the farming-based 122.tachyon being an exception.
Although 130.socorro only does 20 iterations, it has by far the most com-
plex call-tree and the deepest frame depth (with MPI communication down
to depth 18, one further than 127.wrf2): some highly recursive functions in the
initialization phase of 127.wrf2 were filtered out and are not counted here. At
tens of gigabytes per process rank, complete traces of either 122.tachyon or

SCALASCA Parallel Performance Analyses of SPEC MPI2007 Applications 105

Table 3. SPEC MPIm2007 1.0 applications’ 32-way execution characteristics

Program execution RSS Trace buffer content (MB) Filter
Application code steps depth callpaths (MB) total MPI filter residue funcs

104.milc 8+243 6/6 255/257 341 2683 1.7 2626 57 4
107.leslie3d 2000 3/3 40/40 1078 1437 15. 1422 16 6
113.GemsFDTD 1000 4/5 166/185 505 3619 5.9 3582 37 1
115.fds4 2363 1/8 149/151 209 122 2.1 117 6 6
121.pop2 9000 6/6 403/403 748 6361 2494. 2606 3841 6
122.tachyon N/A 3/3 25/27 676 59884 0.7 59809 75 5
126.lammps 500 6/6 162/162 401 291 0.8 290 1 9
127.wrf2 1375 17/22 4951/4975 297 1109 0.4 1106 5 69
128.GAPgeofem 235 4/4 44/44 361 996 33. 971 34 2
129.tera tf 943 3/4 57/59 74 2459 10. 1628 831 4
130.socorro 20 18/23 10350/10352 148 10703 13. 10587 120 21
132.zeusmp2 200 5/5 171/179 377 5 3.4 — 3 0
137.lu 180 4/4 48/49 384 42 28. — 28 0

130.socorro would be prohibitively large, however, specifying a few functions to
filter reduces their requirements to around 100MB/process. Many of the other
applications also benefit from substantial reduction of measurement overheads
when one or more of their user functions are filtered. Unfortunately, a full ex-
ecution measurement of the MPI-dominated 121.pop2 remains intractible even
when only MPI functions are traced, therefore it was necessary to reduce the
number of steps it does from 9000 to 2000 (by modifying its input file).

Table 4 presents the SPEC MPIm2007 application execution times for unin-
strumented runs and for a variety of Scalasca measurement experiments with
32, 128 and 512 processes. When measurements are being collected, run times
are naturally longer than the uninstrumented execution times, due to dilation
introduced by instrumentation and measurement processing, however, this can
be minimized by providing appropriate filters specifying functions to be ignored
during measurement (as determined by an initial summarization measurement).
When an initial full summarization measurement is not practical, as was the case
with 122.tachyon, a filter could be determined from a shorter or smaller execu-
tion. (Although the dilation remains serious, further reduction was not pursued
since 122.tachyon was ultimately not particularly interesting.) For 132.zeusmp2
and 137.lu filtering was neither necessary nor desirable.

As well as reducing measurement dilation, filtering is also appropriate for
reducing the trace buffer capacity requirements, to avoid highly disruptive in-
termediate flushes of trace buffers to disk during measurement: examples of
catastrophic disruption from intermediate trace flushing are detailed in [4]. Fur-
thermore, very large traces are also awkward to analyze, so judicious filtering
balances what measurements are collected and analyzed with what is omitted on
expediency grounds. Functions that have been filtered in this way are ‘invisible’
during analysis, as if they had been ‘in-lined.’ Even with all user functions fil-
tered (i.e., measuring only MPI functions), the 2.5GB/rank trace buffer capacity

106 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

Table 4. SPEC MPIm2007 1.0 applications’ execution times in wallclock seconds with
32, 128 and 512 processes on the p690+ cluster for a variety of instrumentation and
measurement/analysis configurations. ‘None’ is a reference run with neither instrumen-
tation nor measurement (beyond elapsed time), whereas the additional columns refer
to measurements of fully-instrumented versions (i.e., using automatic function instru-
mentation by the compiler and MPI library interposition instrumentation), sometimes
augmented with user-defined phase annotations (p), where measurement was config-
ured for runtime summarization only (Sum) or runtime summarization combined with
event tracing (Trace). Measurements marked (f) used filtering of selected user functions
with excessive overheads. After trace collection during measurement, additional time
is required to dump buffered trace event records to disk (Td) for subsequent automatic
trace analysis (Ta), both done in parallel with the total trace data.

Instrumentation/Measurement Tracing Trace
Application code None Sum Sum+f Sum+pf Trace Td+Ta (GB)

32

104.milc 1556 2140 1616 — 1611 13+50 1.587
107.leslie3d 2704 2945 2807 2892 2787 43+113 0.403
113.GemsFDTD 2028 2680 2042 2111 2102 57+144 0.634
115.fds4 951 1010 960 957 959 92+141 0.130
121.pop2 1687 2415 2176 2104 N/P —+— —
121.pop2 (2000) 398 N/A 514 N/A 518 124+2734 13.613
122.tachyon 2024 N/P 6016 — 6023 1+68 0.007
126.lammps 1883 1988 1899 2001 1963 41+74 0.038
127.wrf2 2352 2945 2499 2475 2550 425+907 18.138
128.GAPgeofem 833 984 879 884 874 14+182 0.670
129.tera tf 2399 2583 2458 2390 2395 17+71 24.737
130.socorro 1411 3990 1631 1701 1703 120+373 3.420
132.zeusmp2 1683 1727 — — 1729 28+67 0.113
137.lu 1771 1815 — — 1910 13+159 1.100

128

113.GemsFDTD 670 — 1033 — 1038 103+216 0.944

512

104.milc 59 — 63 — 69 5+7 0.827
107.leslie3d 179 — 193 — 199 310+343 7.037
113.GemsFDTD 2363 — N/A — N/A —+— —
115.fds4 81 — 86 — 88 272+743 1.050
121.pop2 752 — 1072 — N/P —+— —
121.pop2 (2000) 182 — 226 — 326 1380+2627 103.646
122.tachyon 133 — 383 — 380 2+27 0.069
126.lammps 416 — 445 — 434 233+360 0.167
127.wrf2 269 — 300 — 310 1878+2535 107.929
128.GAPgeofem 69 — 82 — 87 50+333 15.216
129.tera tf 265 — 287 — 298 163+316 72.381
130.socorro 228 — 263 — 268 635+913 25.756
132.zeusmp2 108 112 — — 115 5+19 2.084
137.lu 118 119 — — 119 36+126 19.493

SCALASCA Parallel Performance Analyses of SPEC MPI2007 Applications 107

requirements of 121.pop2 were impractical for tracing a full execution, therefore
measurements were repeated with only 2000 rather than the full 9000 steps.

For applications with identifiable repetitive phases, corresponding to global
timesteps or solver iterations, additional annotation instrumentation was man-
ually inserted into the source code. This was possible for all except 122.tachyon
which is based on a task-farming parallelization, and 104.milc which has a com-
plex structure of nested loops and branches. The overhead of this additional
instrumentation during measurement is found to be much less than the run-
to-run variation of the applications themselves, and the phase markers can be
exploited in subsequent analyses.

After an initial set of 32-way measurements, from which appropriate mea-
surement filters could be determined, 128-way and 512-way measurements were
then taken. (512-way measurements were skipped for 113.GemsFDTD due to
its adverse scaling.) Although the measurement times for runtime summariza-
tion and trace collection are seen to scale in proportion to the uninstrumented
application execution time, trace sizes and corresponding trace handling (dump-
ing of buffers and post-mortem analysis) generally grow more expensive. In a
few cases, however, traces actually become smaller or the use of parallel I/O
decreases trace handling time. For example, 121.pop2 trace sizes and writing
times grew by factors of 7.6 and 11 respectively, however, parallel trace analysis
time actually slightly improved with 8 times the number of processes.

3 Results and Analyses

The final automatic trace analysis reports for each SPEC MPIm2007 bench-
mark application execution (with 32 processes), including functions and anno-
tated phases, were postprocessed to extract the aggregate and individual process
execution behaviour of each application-specific phase (corresponding to global
timesteps or solver iterations as appropriate). 104.milc and 122.tachyon are ex-
cluded from this analysis.

Scalasca analyses automatically determine a variety of performance metrics
for each application call-path and thread of execution, which are concisely pre-
sented in hierarchical trees (as shown in Figures 10&11). Simple V isits counts
and MPI message-passing statistics (e.g., numbers of sends and receives or col-
lective operations and associated Bytes transferred) complement metrics derived
from measured times. MPI Communication and Synchronization times can be
distinguished from total Execution time, and further split into times for Point-to-
point and Collective operations. These summary metrics, which are straightfor-
ward to calculate during measurement, can be augmented by specialized metrics
that can only be determined from analysis of traces searching for patterns of
events indicative of inefficiencies.

Eight of the remaining 11 applications are treated collectively in Figures 2–5,
whereas 107.leslie3d, 129.tera tf and 132.zeusmp2 show particularly interesting
execution behaviour and are examined in more detail afterwards.

108 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

The left column in Figures 2–5 graphs total Execution time and MPI Com-
munication time for each iteration phase. The values for the process(es) with
the largest times are shown red, the median shown blue, and the shortest shown
green. In most cases, no significant difference is apparent in total Execution
time between the fastest and slowest processes, and the graphs appear uniformly
green. 137.lu is one of the exceptions, consistently having an observable differ-
ence in every iteration, whereas a difference is only apparent in the first itera-
tion of 113.GemsFDTD and some of the iterations of 121.pop2. Variation in MPI
Communication time is much more pronounced, both between iterations and be-
tween processes within iterations, exemplified by 115.fds4 and 113.GemsFDTD
respectively.

Whereas most applications show a stable constant execution time for each iter-
ation (sometimes with the first and/or last iteration being distinguished), some
reveal gradually deteriorating performance (e.g., 126.lammps and 127.wrf2).
Much larger Execution time of certain iterations of 126.lammps at regular inter-
vals are also clearly distinguished, and from further analysis found to correlate
to more point-to-point communication every 20th iteration and collective com-
munication every 100th. The execution of 127.wrf2 is clearly dominated by its
1st and 1201th iterations, however, there are also significant iterations with col-
lective communication every 300 iterations.

The right column in Figures 2–5 shows total Execution time and MPI Com-
munication time for each iteration phase as a timeline chart for each process. In
each chart, the value for the largest time is shown in dark red, with the other
values on a progressive scale down to light yellow, and white used if there is no
value for a particular entry. (This colour scale is shown at the bottom of Figures
10&11.) Globally consistent behaviour is generally apparent, including variation
per iteration which appears as peaks in the graphs on the left.

137.lu can again be readily distinguished by its broadly non-deterministic vari-
ation of Execution time across processes in any iteration, however, MPI Com-
munication time reveals a more complex story. Certain processes consistently
have much shorter Communication times than the others, indicative of load im-
balance. More dramatic load imbalance is evident from the horizontal stripes in
the MPI Communication time chart of 113.GemsFDTD , where processes with
ranks 7, 30 & 31 consistently take longer than the others: the latter are found
not to participate in certain local update operations and consequently are always
early when they must communicate with partners. Similar striping can also be
seen in 128.GAPgeofem and on odd-numbered process ranks of 126.lammps. For
121.pop2 it is predominantly higher numbered process ranks that have longer
MPI Communication times.

Note that the phase annotations do not explicitly synchronize processes, such
that the time for a particular iteration on one process can vary significantly
from that of its peers, however, inter-process communication results in loose
synchronization in those cases where explicit collective synchronization is not
used by the application itself in each iteration.

SCALASCA Parallel Performance Analyses of SPEC MPI2007 Applications 109

Fig. 2. SPEC MPIm2007 113.GemsFDTD and 115.fds4 iteration time metrics

110 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

Fig. 3. SPEC MPIm2007 121.pop2 and 126.lammps iteration time metrics

SCALASCA Parallel Performance Analyses of SPEC MPI2007 Applications 111

Fig. 4. SPEC MPIm2007 127.wrf2 and 128.GAPgeofem iteration time metrics

112 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

Fig. 5. SPEC MPIm2007 130.socorro and 137.lu iteration time metrics

SCALASCA Parallel Performance Analyses of SPEC MPI2007 Applications 113

3.1 107.leslie3d

Iteration statistics graphs and timeline charts for a variety of performance met-
rics measured for 107.leslie3d are shown in Figure 6. The Execution time metric
shows a clear transition at iteration number 1015, with iterations taking roughly
1.35s before and 1.37s afterwards. This is seen to correlate with the median
Point-to-point Communication time metric increasing from 0.10s to 0.13s after
iteration 1015. Furthermore, the fraction of Point-to-point Communication time
considered to be due to early receivers blocked waiting on senders to initiate
communication (Late Sender) is clearly anti-correlated with the performance
degradation and mostly restricted to processes with ranks 10 & 11. They are
also found to be receiving messages in non-optimal order: Late Sender / Wrong
Message Order during that period indicates that a message already in tran-
sit could have been received instead of waiting for another not yet initiated.
The Collective Communication time metric doesn’t show a transition, but has a
prominent peak value for iteration 1015. Although there is a significant variation
in the number of call-path Visits and Bytes transferred by processes, they remain
constant thoughout, and therefore don’t explain the dramatic transition. Addi-
tional 107.leslie3d measurement experiments showed similar transitions, though
with varying onset, severity, and affected processes, suggesting that an external
influence is responsible for this significant disruption in execution performance.
While other benchmarks seem less susceptible to this effect, it has also been
identified in 121.pop2 and 126.lammps measurements. One explanation could
be process migration away from its local memory within the SP2 SMP node,
however, an AIX API to determine processor bindings for processes has not yet
been identified to be able to investigate this.

3.2 129.tera tf

Iteration statistics graphs and timeline charts for a variety of performance met-
rics measured for 129.tera tf are shown in Figure 7. The Execution time metric
shows a progressive increase from 1.2s to 2.9s for iterations, with occasional
non-deterministic peaks. This increase is largely explained by the increase in
maximum Point-to-point Communication time (0.1s growing to 1.5s) during the
course of execution: the maximum Collective Communication time also grows to
0.4s. Both graphs show intriguing fine-scale variations from iteration to iteration
amid larger-scale progressive trends

Blocking time of early receivers waiting for senders to initiate communication,
considered Late Sender time, is seen to contribute significantly to Point-to-point
Communication time, and found to affect different processes at different stages
of execution. A ‘hump’ in maximum Late Sender time for iterations between 240
and 450 is remarkably prominent. Not shown, Collective Synchronization time
is insignificant, with only the final iteration containing MPI Barrier calls, and
variation in the number of callpath Visits and Bytes transferred by processes is
clearly evident, but constant throughout.

114 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

Fig. 6. Graphs and charts of SPEC MPIm2007 107.leslie3d iteration time metrics

SCALASCA Parallel Performance Analyses of SPEC MPI2007 Applications 115

3.3 132.zeusmp2

Although 132.zeusmp2 demonstrated extremely good scalability to 512
processes, Scalasca analyses of 32-way experiments identified potentially im-
portant inefficiencies which warranted further investigation. Further experiments
were therefore collected with 512 processes, to examine how these inefficiencies
develop at larger scale.

Iteration statistics graphs and timeline charts for a variety of performance
metrics measured for 512-way execution of 132.zeusmp2 are shown in Figures 8
and 9. The Execution time metric (upper left) shows a progressive increase from
0.43s to 0.49s for timesteps (after the initial timestep), with occasional out-
liers taking a little longer. Following down the column of metric graphs, this
behaviour is explained by the median aggregate Communication time, which
increases from 0.05s to 1.0s during the course of execution, with occasional
iterations taking almost double as long. This is predominantly Point-to-point
Communication time, with around a fifth due to Collective Communication time.
Minimum time per iteration for the point-to-point operations fluctuates around
0.02s. Notably, while Collective Communication time was negligible during 32-
way runs of 132.zeusmp2, it has grown to be relatively significant in this 512-way
experiment.

The bottom graphs of Figure 9 show that blocking time of early receivers
waiting for senders to initiate communication, i.e., Late Sender time, contributes
around half of the Point-to-point Communication time, and around half of it is
for receiving messages out of order (i.e., Late Sender / Wrong Message Order).
Multiple iterations are seen to have elevated times across most of the processes,
and account for pronounced peaks in the median time, e.g., for iterations 39,
53 & 179, in both of these metrics. These higher communication times also
carry through to observable delays in total Execution time for those iterations.
Variation in the number of callpath Visits and Bytes transferred by process is
clearly evident, but constant throughout, so provide no further insight into this
dynamic execution behaviour.

The detailed metric charts and graphs provide a comprehensive view of the
execution performance across processes and through time for annotated itera-
tions and timesteps, which complements the profile-oriented Scalasca analysis
presentation.

From the runtime summarization report shown by the Scalasca analysis
report examiner GUI in Figure 10, MPI Communication time is found to be
18.4% of total execution time. 70% of this is Point-to-point Communication
time, however, Collective Communication time which was insignificant with 32
processes now contributes the rest: this might be indicative of deteriorating
load balance or lower efficiency of collectives using the IBM High Performance
Switch when using multiple SMP nodes. MPI Point-to-point Communication
time is largely concentrated in MPI Waitall calls in the three routines bvalemf1,
bvalemf2 and bvalemf3 on the call-path to hsmoc via ct and transprt. For these
MPI Waitall calls, there is a substantial variation across the 512 processes. with

116 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

Fig. 7. Graphs and charts of SPEC MPIm2007 129.tera tf iteration time metrics

SCALASCA Parallel Performance Analyses of SPEC MPI2007 Applications 117

Fig. 8. Graphs and charts of SPEC MPIm2007 132.zeusmp2 timestep metrics

118 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

Fig. 9. Graphs and charts of SPEC MPIm2007 132.zeusmp2 timestep metrics (cont.)

SCALASCA Parallel Performance Analyses of SPEC MPI2007 Applications 119

Fig. 10. Scalasca analysis report of SPEC MPIm2007 132.zeusmp2 512-process exe-
cution runtime summarization experiment, showing unbalanced distribution of Point-
to-point Communication time (left pane) on critical call-path to MPI Waitall calls
in function bvalemf1 (central pane). Closed tree nodes show inclusive metric values
(including child node values), whereas open tree nodes show exclusive metric values
(excluding child values). Numerical metric values are also colour-coded according to
the scale at the bottom. Values in each pane are accumulated from those in panes to the
right, and selecting a metric or call-path sets that node’s metric value as the focus for
panes to the right. 12.8% of total execution time is MPI Point-to-point Communication
time, 13.9% of which is in the MPI Waitall calls from bvalemf1, with a 35.6% standard
variation across the 512 processes, and highest values predominantly for processes in
the 2nd and 7th z-planes of the application’s 8×8×8 Cartesian grid (right pane).

120 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

Fig. 11. Scalasca analysis report of SPEC MPIm2007 132.zeusmp2 512-process exe-
cution tracing experiment, including manually inserted timestep annotations, showing
unbalanced distribution of Late Sender time for the MPI Waitall calls directly from
function ct during the first timestep. 7.6% of total execution time is due to Late Sender
situations, which is 57.7% of MPI Point-to-point Communication time. This varies con-
siderably from timestep to timestep, and manifests as a 105.1% standard deviation in
the MPI Waitall calls in ct during the first timestep, localized to a small number of
interior processes of the 8×8×8 Cartesian grid.

highest values localized on certain processes, which can be determined from their
locations within the 8×8×8 Cartesian grid used by 132.zeusmp2.

SCALASCA Parallel Performance Analyses of SPEC MPI2007 Applications 121

Additional insight into the origin of this imbalance in MPI Point-to-point
Communication time can be derived from the automatic trace analysis report
shown in Figure 11. Metrics which are only available from trace analysis show
that inefficiencies are growing, e.g., Late Sender situations are now 57.7% of
MPI Point-to-point Communication time. The additional timestep annotations
distinguish the metric variation between timesteps, which is clearly consid-
erable. Of more concern, however, is the huge variation between processes
within each timestep, which is localized to relatively small numbers of interior
processes.

3.4 Review of SCALASCA SPEC MPI2007 Benchmark Analyses

SPEC MPI2007 is a substantial suite of application kernels for testing the
effectiveness of performance tools. By collecting and analyzing execution
measurement experiments with 512 processes for each benchmark, the various
Scalasca measurement and analysis techniques have demonstrated that they
scale well, and provide insight into significant performance problems. Annotat-
ing repetitive execution phases [12,13] and associated timeline charts of those
phases [14] support deeper and clearer understanding of those performance is-
sues, to determine which execution intervals and processes are affected. Although
the analyses presented here concentrated on MPI communication and synchro-
nization, metrics acquired from processor and network hardware counters can
readily be incorporated in measurement experiments for a holistic view of exe-
cution performance [15].

Certain dubious coding constructs used in the SPEC MPI2007 applications,
however, resulted in analysis problems. For example, a non-void function with-
out an explicit return statement was incorrectly instrumented by the IBM XL
compiler, such that exits were not matched with corresponding entry instrumen-
tation. In these rare cases, the offending source code was modified and then the
compiler generated correct instrumentation.

The analyses also identified oddities in some of the SPEC MPIm2007 bench-
marks, e.g., 115.fds4 makes numerous calls to MPI Waitall always with an empty
list of requests. Although this is a valid test of MPI performance, simple appli-
cation optimization would skip the MPI Waitall call in such cases.

122.tachyon and 129.tera tf appear to scale perfectly, however, other SPEC
MPI2007 applications show performance tailing off with larger numbers of
processes, and the Scalasca analyses at large scale provide crucial insight
into the governing performance factors, as demonstrated with 132.zeusmp2. For
137.lu, 132.zeusmp2 and 126.lammps the problem size is too small to scale to
larger numbers of processes, or there are coded scalability limiters (enforced or
implied). Clearly unacceptable scaling of 113.GemsFDTD appears mainly to
be due to its inefficient scheme for distributing data using broadcasts during
initialization prior to the update loop.

122 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

4 Conclusions and Future Work

Applying established performance analysis techniques for phase annotation,
event filtering, runtime summarization, event tracing and analysis presenta-
tion, via the Scalasca toolset, to the SPEC MPI2007 benchmark suite ap-
plications has revealed a variety of complex execution behaviour and potential
opportunities for performance improvement. Although 512 processes is a rela-
tively modest scale for the current generation of HPC applications, the ability
to collect and analyze measurements effectively from long-running, real-world
applications was demonstrated.

With their limited scalability and significant process memory requirements,
the SPEC MPIm2007 benchmarks are clearly not suitable for the largest ‘leader-
ship’ computer systems, such as IBM BlueGene, Cray XT and Sun Constellation.
When a ‘large-sized’ benchmark configuration becomes available, it will be inter-
esting to repeat the Scalasca analyses at the large-scale for which the toolset
was designed and already validated with other HPC applications [16].

Automated classifications of equivalence groups of phases and processes with
related behavioural characteristics are currently being investigated with the aim
of making measurements and analyses more concise, and thereby more scalable.
Future work will also examine how the presentation of such analyses can be scaled
adequately for much larger numbers of processes (often in the tens of thousands)
and integrated within the Scalasca interactive analysis report explorer GUI.

References

1. Standard Performance Evaluation Corporation, SPEC MPI2007 benchmark suite,
http://www.spec.org/mpi2007/

2. Müller, M.S., van Waveren, M., Lieberman, R., Whitney, B., Saito, H., Kalyan, K.,
Baron, J., Brantley, B., Parrott, C., Elken, T., Feng, H., Ponder, C.: SPEC MPI
2007 — An application benchmark for clusters and HPC systems. In: Proceedings
of ISC 2007, Dresden, Germany (June 2007) (Also available as internal report
ZIH-IR-0708, Technische Universität Dresden, Germany)

3. Müller, M.S.: Applying performance tools to real world applications. In: Proceed-
ings of Seminar 07341 on Code Instrumentation for Massively Parallel Performance
Analysis, Dagstuhl, Germany (September 2007)

4. Müller, M.S., Knüpfer, A., Jurenz, M., Lieber, M., Brunst, H., Mix, H., Nagel,
W.E.: Developing scalable applications with Vampir, VampirServer and Vampir-
Trace. In: Parallel Computing: Architectures, Algorithms and Applications, Proc.
12th ParCo Conf., Jülich/Aachen, vol. 15, pp. 637–644. IOS Press, Amsterdam
(2008)

5. Fürlinger, K., Gerndt, M., Dongarra, J.: Scalability analysis of the SPEC OpenMP
benchmarks on large-scale shared-memory multiprocessors. In: Shi, Y., van Albada,
G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4488, pp. 815–822.
Springer, Heidelberg (2007)

6. Aslot, V., Eigenmann, R.: Performance characteristics of the SPEC OMP2001
benchmarks. In: Proc. 3rd European Workshop on OpenMP, EWOMP 2001,
Barcelona, Spain (September 2001)

SCALASCA Parallel Performance Analyses of SPEC MPI2007 Applications 123

7. Saito, H., Gaertner, G., Jones, W., Eigenmann, R., Iwashita, H., Lieberman, R.,
van Waveren, M., Whitney, B.: Large system performance of SPEC OMP2001
benchmarks. In: Proc. Int’l Workshop on OpenMP Experiences and Implementa-
tions (WOMPEI 2002) (2002)

8. Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Frings, W., Fürlinger, K.,
Geimer, M., Hermanns, M.-A., Mohr, B., Moore, S., Pfeifer, M., Szebenyi, Z.:
Usage of the Scalasca toolset for scalable performance analysis of large-scale par-
allel applications. In: Proc. 2nd Int’l Workshop on Tools for High Performance
Computing, Stuttgart, Germany, Springer (July 2008) (to appear)

9. Wylie, B.J.N., Wolf, F., Mohr, B., Geimer, M.: Integrated runtime measurement
summarization and selective event tracing for scalable parallel execution perfor-
mance diagnosis. In: K̊agström, B., Elmroth, E., Dongarra, J., Waśniewski, J. (eds.)
PARA 2006. LNCS, vol. 4699, pp. 460–469. Springer, Heidelberg (2007)

10. Geimer, M., Wolf, F., Wylie, B.J.N., Mohr, B.: Scalable parallel trace-based per-
formance analysis. In: Mohr, B., Träff, J.L., Worringen, J., Dongarra, J. (eds.)
PVM/MPI 2006. LNCS, vol. 4192, pp. 303–312. Springer, Heidelberg (2006)

11. John von Neumann Institute for Computing, Jülich Multiprocessor IBM p690+
cluster, http://www.fz-juelich.de/jsc/jump

12. Wylie, B.J.N., Gove, D.J.: OMP AMMP analysis with Sun ONE Studio 8. In:
Proc. 5th European Workshop on OpenMP EWOMP 2003, Aachen, Germany,
September 2003, pp. 175–184. RWTH Aachen University (2003)

13. Malony, A.D., Shende, S.S., Morris, A.: Phase-based parallel performance profiling.
In: Parallel Computing: Architectures, Algorithms and Applications, Proc. 11th
ParCo Conf., Málaga, Spain, September 2005. NIC Series, vol. 33, pp. 203–210.
John von Neumann Institute for Computing, Jülich, Germany (2005)

14. Fürlinger, K., Gerndt, M., Dongarra, J.: On using incremental profiling for the
performance analysis of shared-memory parallel applications. In: Kermarrec, A.-
M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 62–71. Springer,
Heidelberg (2007)

15. Wylie, B.J.N., Mohr, B., Wold, F.: Holistic hardware counter performance analysis
of parallel programs. In: Parallel Computing: Architectures, Algorithms and Ap-
plications, Proc. 11th ParCo Conf., Málaga, Spain, September 2005. NIC Series,
vol. 33, pp. 187–194. John von Neumann Institute for Computing, Jülich, Germany
(2006)

16. Wylie, B.J.N., Geimer, M., Wolf, F.: Performance measurement and analysis of
large-scale parallel applications on leadership computing systems. In: Scientific
Programming, special issue on Large-scale Programming Tools and Environments.
IOS Press, Amsterdam (to appear, 2008)

17. Jülich Supercomputing Centre, SCALASCA toolset for scalable performance analy-
sis of large-scale parallel applications, http://www.scalasca.org/

Generating Probabilistic and Intensity-Varying

Workload for Web-Based Software Systems�

André van Hoorn, Matthias Rohr, and Wilhelm Hasselbring

Software Engineering Group, University of Oldenburg, Germany
{van.Hoorn,Rohr,Hasselbring}@Informatik.Uni-Oldenburg.DE

Abstract. This paper presents an approach and a corresponding tool for
generating probabilistic and intensity-varying workload for Web-based
software systems. The workload to be generated is specified in two types
of models. An application model specifies the possible interactions with
the Web-based software system, as well as all required low-level protocol
details by means of a hierarchical finite state machine. Based on the ap-
plication model, the probabilistic usage is specified in corresponding user
behavior models by means of Markov chains. Our tool Markov4JMeter
implements our approach to probabilistic workload generation by extend-
ing the popular workload generation tool JMeter. A case study demon-
strates how probabilistic workload for a sample Web application can be
modeled and executed using Markov4JMeter.

1 Introduction

Web-based software systems, such as online shopping systems or auction sites,
are large-scale software systems which users access through an interface provided
by a Web server. These typically business-critical systems must satisfy contrac-
tually specified service level agreements, e.g., upper bounds on user-perceived
response times with respect to certain load conditions. In order to systematically
evaluate the performance, load tests are carried out: a software called workload
generator mimics user behavior by submitting requests to the Web server; the
performance of the software is monitored for later analysis [1]. Usually, such a
workload generator either replays requests from recorded real-world workload
or generates requests based on mathematical models [2]. In order to provide
meaningful results, a key requirement for load tests is that the simulated user
behavior is realistic, i.e., the virtual users behave like real users do.

The first part of this paper will present our approach for specifying and gen-
erating probabilistic workload for Web-based software systems based on mathe-
matical models. The main elements of the workload specification are two types
of models. An application model specifies the possible interactions with the
Web-based software system, as well as all required low-level protocol details by

� This work is supported by the German Research Foundation (DFG), grant GRK
1076/1.

S. Kounev, I. Gorton, and K. Sachs (Eds.): SIPEW 2008, LNCS 5119, pp. 124–143, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Generating Probabilistic and Intensity-Varying Workload 125

means of a hierarchical finite state machine. By means of Markov chains, the
probabilistic usage is specified in user behavior models corresponding to the ap-
plication model. Moreover, our approach explicitly considers the specification
of a varying workload intensity, i.e., the number of concurrent virtual users,
within a single workload generation run. This allows to easily carry out long-
term load tests with realistic workload intensity profiles. We will present the
conceptual architecture of a workload generator which executes such specifica-
tions of probabilistic and intensity-varying workload. Based on our approach,
we implemented the corresponding workload generation tool Markov4JMeter.
Markov4JMeter extends the popular workload generator JMeter [3]. The re-
sulting implementation and integration into JMeter are demonstrated in the
second part of this paper. The case study of this paper illustrates how proba-
bilistic workload for a sample Web application can be specified using our ap-
proach and how this specification can be executed with JMeter extended by
Markov4JMeter.

The remainder of this paper starts with a summary of the background and
related work in Section 2. A description of our workload generation approach
including the workload specification and the conceptual workload generator is
given in Section 3. Section 4 presents the implementation of Markov4JMeter
and its integration into JMeter. As a case study, Section 5 demonstrates how
Markov4JMeter is used to generate workload for a sample Web application. Our
conclusions follow in Section 6.

2 Background and Related Work

Web-based software systems provide services through a Web interface using
protocols like the Hypertext Transfer Protocol (HTTP) [4]. Each service can
be considered a use case, e.g., signing on to the system or adding an item to
the shopping cart. Invoking such a service requires submitting one or more pa-
rameterized lower-level protocol-specific requests. For example, in order to sign
on, it is usually required to first request the corresponding HTML form and
to submit the completed form including username and password in a second
step. The HTTP request/response model is illustrated in Figure 1. A number
of users concurrently accesses a Web-based system by submitting HTTP re-
quests and waiting for the server response. Each user independently alternates
between submitting a request and waiting for a time period called think time
after it has received the server response. A session denotes the sequence of re-
lated request or service invocations issued by the same user [5].

In their workload generation approach, Barford and Crovella [2] introduced
the ON/OFF model. Software processes called User Equivalents (UE) alternate
between the two states ON (submit request and wait for the response) and
OFF (think time period). We use the concept of UEs in our workload generation
approach presented in Section 3.2. The UE concept is denoted as user simulation
thread in this paper. A user simulation thread executes the workload model of
a single virtual user.

126 A. van Hoorn, M. Rohr, and W. Hasselbring

1

n

...

Web based
System

Users

HTTP request HTTP response

Fig. 1. Typical HTTP request/response model of a Web-based system that is concur-
rently accessed by n users

Markov chains are a common means for characterizing user behavior, e.g., for
Web-based software systems [5] or in statistical software testing [6]. A Markov
chain is a probabilistic finite state machine, i.e., each transition between two
states is weighted with a probability. Menascé et al. [5] used Markov chains to
model classes of user behavior within a session by so-called Customer Behav-
ior Model Graphs (CBMG). The states of a CBMG represent service invoca-
tions. The CBMGs can be derived from Web server access logs using clustering
algorithms [5]. Lee and Tian [7] showed that Markov chains provide fairly ac-
curate models of Web usage. Ballocca et al. [8] derived user behavior in their
workload generator from CBMGs. Based on the CBMGs by Menascé et al.,
Markov chains are the key elements of our user behavior models presented in
Section 3.1.

According to Krishnamurthy et al. [9], we consider the class of session-based
systems. In these systems, inter-requests dependencies exist, meaning that some
requests within a session depend on requests submitted earlier during the same
session. For example, a user must not submit an order without having added
a single item to the shopping cart (and must not have removed all items from
the cart later). Shams et al. [10] used so-called Extended Finite State Machines
(EFSM) to model valid sequences of interactions with the application using con-
ditional transitions between states and by explicitly considering the parame-
ters to be passed with a submitted request. The application models defined in
Section 3.1, specifying allowed sequences of service invocations within a session,
were inspired by this work. However, they do differ from Shams et al.’s EF-
SMs in that the application model is separated into a logic session layer and an
underlying technical protocol layer for abstraction purposes.

Peña-Ortiz et al. [11] provide an overview of outstanding and historical work-
load generators including an evaluation in terms of their features and capabilities.
We explicitly modeled the workload generator on a conceptual level including
the execution semantics and implemented the resulting tool Markov4JMeter as
an extension for the popular workload generator JMeter [3].

Generating Probabilistic and Intensity-Varying Workload 127

Workload Specification

1 1

1..* 1..*

Occurence

1..*

Application Model User Behavior Model Workload IntensityUser Behavior Mix

1

Fig. 2. Class diagram of the workload specification elements and their relations

3 Our Workload Generation Approach

Section 3.1 defines the workload specification including the probabilistic
workload model. The conceptual architecture of the workload generation tool
executing this workload specification is presented in Section 3.2.

3.1 Workload Specification

The workload specification for our probabilistic workload generation approach
consists of the four elements listed below.

– An application model, specified as a hierarchical finite state machine.
– A number of corresponding user behavior models, each one specified as a

Markov chain.
– A user behavior mix, specified as probabilities for the individual user behavior

models to occur during workload generation.
– A definition of the workload intensity, specified as the (possibly varying)

number of users to simulate during the experiment.

The application model defines the allowed sequences of service invocations
submitted within a user session and contains all protocol-level details required
to generate valid requests. The actual order of service invocations is derived
from probabilistic user behavior models corresponding to the application model.
The workload generator combines the application model and the user behavior
models into probabilistic session models based on which the requests are executed
for each virtual user. This is described in Section 3.2. The user behavior mix
defines with which probability each user behavior model occurs during workload
generation. The workload intensity is a specification of the number of users to
simulate during the experiment, given as a mathematical formula of the elapsed
experiment time.

These elements are described in detail in the remainder of this section. Figure 2
illustrates their multiplicities and relations among each other in a UML Class
Diagram.

128 A. van Hoorn, M. Rohr, and W. Hasselbring

Fig. 3. Sample application model illustrating the separation into session layer and
protocol layer

Application Model. An application model is a two-layered hierarchical finite
state machine. It consists of a session layer modeling the valid sequences of
service invocations within a user session and a protocol layer specifying the
related protocol details. Figure 3 displays the illustrating example used in this
section.

Session Layer. Each node on the session layer, called application state, corre-
sponds to a service provided by the application. An edge between two states,
called application transition, represents a valid sequence of service invocations
within a session. Thus, our session layer corresponds to UML Protocol State
Machines as they were introduced into version 2 of the UML standard [12].

Application transitions can be labeled with guards and actions. A guard is a
boolean expression stating that a transition can only be taken if the expression
evaluates to true. An action is a list of statements, such as variable assignments
or function calls executed when a transition is taken.

The session layer in Figure 3 contains the states S0, S1, and S2 using the
variables a, b, and c in the guards and actions. For example, a transition from
state S2 to S0 is only possible if b!= 0 evaluates to true. When this transition
fires, the variable b is assigned the value 1.

For the Web-based shopping system described in Section 5, we will demon-
strate how variables, guards, and actions can be used in the application model
to store additional state information during workload generation. For example,
the session layer specifies that a customer must not submit a purchase request
when no items are in the shopping cart. Whether an item has been added to the
cart, is maintained in a dedicated variable.

Generating Probabilistic and Intensity-Varying Workload 129

Protocol Layer. Each application state has an associated finite state machine on
the protocol layer. A state machine is executed when the related application state
is entered. It models the sequence of protocol-level requests to be invoked. Anal-
ogous to the session layer, transitions may be labeled with guards and actions.
Particularly, variables and functions can be used to assign request parameter
values dynamically.

The state machine related to the application state S0 in Figure 3 contains the
three protocol states a.shtml, b.shtml, and c.shtml which in this case correspond
to URIs for HTTP requests. After the request for a.shtml has been submitted,
the next state depends on the result of the evaluation of the expression a > 0 in
the guard.

User Behavior Model. In addition to an application model, our workload
specification requires the definition of one or more corresponding user behavior
models. A user behavior model constitutes a probabilistic model of service invo-
cation sequences within simulated user sessions, i.e., given the last application
service invoked by a user, what is the probability for each service to be invoked
next by this user. A class of similarly behaving users can be represented by a
single user behavior model. Additionally, such model contains a specification of
the think time, i.e., the time period between two consecutive protocol layer re-
quests of the same user. For each virtual user, the workload generator submits
requests based on a probabilistic session model which is a composition of the ap-
plication model and one corresponding user behavior model. Section 3.2 explains
the semantics of this composition in detail.

The key element of a user behavior model is a Markov chain, which can
be considered a probabilistic finite state machine with a dedicated entry and
a dedicated exit state. Each transition between two states is weighted with a
probability. The sum of probabilities associated with all outgoing transitions of
each state must be 1. Aside from the additional exit state, each state in our
user behavior model’s Markov chain corresponds to one application state on the
session layer of the application model.

Formally, we define a user behavior model BA,i for an application model A
as a tuple (S ∪ {Exit}, P, z0, ftt). S denotes the set of states contained in the
Markov chain with entry state z0 ∈ S. The state Exit is the dedicated exit state
which has no corresponding application state. P denotes the matrix containing
the transition probabilities. The transition matrix of a Markov chain with n
states s0 . . . sn−1 is usually represented by an n × n matrix P = [pi,j]. A value
pi,j in the ith row and the jth column of the matrix P represents the transition
probability from state si to sj . The think time is specified as a probability
distribution ftt. For example when ftt is assigned N(300, 2002), the think time
is modeled according to the normal distribution N(μ, σ2) with mean μ = 300 ms
and standard deviation σ = 200 ms.

130 A. van Hoorn, M. Rohr, and W. Hasselbring

S1

S0 S2

0.1

0.5

0.5

0.1

0.7

0.1

Exit

ExitExit
0.2

0.4

0.4

(a) BA,0

S1

S0 S2

0.1

0.3

0.1

0.7

0.3

0.65

Exit

ExitExit
0.05

0.2

0.6

(b) BA,1

Fig. 4. Markov chains of two user behavior models corresponding to the application
model in Figure 3

Figure 4 shows the Markov chains of two possible user behavior models BA,0
and BA,1 corresponding to the application model with application states S0 . . . S2
shown in Figure 3. Both user behavior models BA,0 and BA,1 solely differ in their
transition probabilities.

User Behavior Mix. The user behavior mix specifies with which probability
each user behavior model included in the workload specification occurs dur-
ing workload generation. For example, let one user behavior model represent a
class of users which mainly browse through the product catalog of an online
shopping store without buying anything, and let a second user behavior model
represent a class of users which actually buy products during their visit. These
two classes of users do not necessarily occur with the same probability in real
workloads.

Formally, a user behavior mix for an application A is a set {(BA,0, p0), . . . ,
(BA,n−1,pn−1)} assigning probabilities pi to user behavior models BA,i. A tu-
ple (BA,i, pi) states that user sessions based on the user behavior model BA,i

occur with the probability pi ∈ [0, 1] during workload generation. The sum of
probabilities must be 1.

Workload Intensity. The workload intensity for an experiment is specified in
terms of the number of active sessions, i.e., the number of virtual users being
simulated concurrently. A generated session is considered active while the work-
load generator submits requests based on the corresponding probabilistic session
model (the exit state of the Markov chain has not been reached). A function
n : R≥0 �→ N specifies this number n(t) of active sessions relative to the elapsed
experiment time t. Particularly, this allows for generating a varying workload
intensity profile, e.g., based on measured workload data. Figure 5 shows the
curve of a varying workload intensity specification for a workload generation
experiment.

Generating Probabilistic and Intensity-Varying Workload 131

0
50

10
0

15
0

0 5 10 15 20 25 30
Experiment time (minutes)

A
ct

iv
e

se
ss

io
ns

Fig. 5. Curve of a varying workload intensity specification for a workload generation
experiment

1

1

0..*0..*

1

0..*

Behavior Mix Controller

1

1

User Simulation Thread

Engine

1

assigned by >
initializes and controls>

includes >

includes >

session entrance
scheduled by >

1
Session Arrival Controller

user behavior model

Fig. 6. Architecture of the conceptual workload generator

3.2 Workload Generation

This section describes the conceptual architecture of our workload generator.
It consists of the following four components: a workload generation engine, a
behavior mix controller, a session arrival controller, and a pool of user sim-
ulation threads. The workload generation engine initializes and controls the
other components based on a workload specification as defined in the previous
Section 3.1. Each user simulation thread periodically simulates a single user ses-
sion based on probabilistic session models. The behavior mix controller assigns
the user behavior models to the user simulation threads each time a new virtual
user is to be simulated. The session arrival controller controls the number of
active sessions according to the specified workload intensity. A more detailed
description of the components, as well as the composition of the probabilis-
tic session model and its execution, are given in the remainder of this section.
Figure 6 shows the architecture including the four components and their relations
as a UML Class Diagram.

132 A. van Hoorn, M. Rohr, and W. Hasselbring

User Simulation Threads. As described above, the workload generator con-
tains a pool of user simulation threads, which are the executing entities during
the workload generation. Each user simulation thread consecutively simulates
users based on the specified application model and a corresponding user behav-
ior model by executing the following steps in each iteration:

(1) Request a user behavior model from the behavior mix controller.
(2) Request the session arrival controller for a permission to execute a session.
(3) Execute the probabilistic session model which is a composition of the appli-

cation model and the assigned user behavior model.

Behavior Mix Controller. The behavior mix controller controls the assign-
ment of user behavior models to user simulation threads. Before starting the
simulation of a new session, in step (1) listed above, a user simulation thread
is assigned the user behavior model based on which the user simulation thread
generates the workload. The probability of assigning each of the user behav-
ior models is based on the user behavior mix which is part of the workload
specification.

Session Arrival Controller. The session arrival controller controls the cur-
rently allowed number of active user sessions, i.e., the specified workload inten-
sity, throughout the experiment. The controller provides a session entrance and
exit protocol for the user simulation threads which is similar to the concept of
synchronizing processes using semaphores [13].

– The blocking operation enterSession() must be called by a user simulation
thread when starting the simulation of a session for a new virtual user, i.e., in
the above-listed step (2). The operation returns immediately if the current
number of active sessions is lower than the current maximum number of
active sessions specified in the workload intensity function. Otherwise, the
user simulation thread gets blocked in a waiting queue until the number of
active sessions falls below the specified number.

– The non-blocking operation exitSession() must be called by a user simu-
lation threads when the simulation of the probabilistic session model ends,
i.e., after step (3). Thus, the number of active sessions is decremented by 1.

Probabilistic Session Model. As explained in Section 3.1, the application
model defines the allowed sequences of service invocations submitted within a
user session and contains all protocol-level details required to generate valid re-
quests; the actual order of service invocations and the think times between two
consecutive requests are specified in the user behavior models corresponding to
the application model. An application model and a corresponding user behav-
ior model are directly related by the application states and the states of the
Markov chain. We mentioned, that the actual requests to the Web-based soft-
ware system are generated by the user simulation threads which periodically ex-
ecute a composition of the application model and a corresponding user behavior

Generating Probabilistic and Intensity-Varying Workload 133

model – denoted a probabilistic session model. Now, we will define the semantics
of this composition.

The composition of the application model and a user behavior model into a
single probabilistic session model executed by a user simulation thread is per-
formed straightforward by enriching the application transitions with the proba-
bilities contained in the Markov chain of the user behavior model. Starting with
the entry state z0 defined in the user behavior model, a probabilistic session
model is executed as follows. Given a current state, the next state is determined
by first evaluating the guards of the outgoing transitions related to the current
state. One of the transitions whose guards evaluate to true is randomly selected
based on their assigned probabilities. The action of the selected transition is
executed and the requests towards the application are submitted by traversing
the deterministic state machine of the state within the protocol layer of the ap-
plication model. A session ends when the determined transition leads to the Exit
state of the user behavior model.

4 Tool for Generating Probabilistic and Intensity-Varying
Workload

Based on the conceptual approach for generating probabilistic and intensity-
varying workload presented in Section 3, we implemented a workload generation
tool. Implementing such a tool from scratch would have required us to imple-
ment a bunch of low-level functionalities which do already exist in a number of
workload generation tools (cf. [11] for an overview of existing tools). Instead,
we integrated our approach into the popular open source workload generator
Apache JMeter [3], and could thus focus on the implementation of those func-
tionalities specific to our approach. Our extension, called Markov4JMeter, is
freely available [14] under an open source license. The following Section 4.1 gives
an overview of JMeter including relevant parts of its architecture. Section 4.2 de-
scribes the implementation of Markov4JMeter and the integration into JMeter.
It is demonstrated how the sample workload specification used as the running
example in Section 3 is defined in our workload generation tool.

4.1 Apache JMeter

Apache JMeter [3] is a Java-implemented workload generation tool for testing
Web applications particularly in terms of performance. The workload is specified
graphically in a so-called Test Plan which is a tree of Test Elements. The core
Test Elements are Logic Controllers and Samplers. Logic Controllers, e.g., If
and While Controllers, group Test Elements and define the control flow of a Test
Plan when being executed. Samplers, such as HTTP Request or FTP Request,
are located at the leafs of the tree and send the actual protocol-level requests.
A test run can both be started by means of the graphical user interface (GUI)
and from the command line using the non-GUI mode.

134 A. van Hoorn, M. Rohr, and W. Hasselbring

GUI

Thread

Test Plan
(configuration)

Engine

control.gui
samplers.gui

config.gui
assertions.gui

creates
and

modifies
executes

reads
configuration

from

initializes
and

controls

instance
of

Test Plan
(instance)

Thread Group
contains
number of

assertions
config

samplers
control

stored as

Non GUI

JM
et

er
 T

es
t E

le
m

en
ts

... ...

start and stop

Test Plan
File

(JMX)

Behavior
Files

(CSV)

M
ar

ko
v4

JM
et

er
Te

st
 E

le
m

en
ts

markov4jmeter.controlmarkov4jmeter.control.gui
MarkovSessionControllerGui
extends AbstractControllerGui

SessionArrivalFormulaPanel

MarkovStateGui
extends AbstractControllerGui

ApplicationTransitionsPanel

BehaviorMixPanel

MarkovSessionController
extends GenericController

SessionArrivalFormula

MarkovState
extends GenericController

ApplicationTransitions

BehaviorMix

refers to

Session
Arrival

Controller

Behavior
Mix

Controller

re
ad

s
us

er
 b

eh
av

io
r m

od
el

s
fro

m

co
nf

ig
ur

ed
 v

ia

Fig. 7. Integration of Markov4JMeter into the architecture of JMeter. The gray ele-
ments are Markov4JMeter components.

The internal architecture of JMeter including the core components and their
relations is illustrated in Figure 7 (the non-gray elements). The Engine is re-
sponsible for controlling the workload generation run. It initializes the Thread
Group including the specified number of Threads (Java threads). Each Thread,
represents a virtual user and executes an instance of the Test Plan. A Test Plan
is internally represented by a tree of Test Element classes (Java classes) corre-
sponding to the respective Test Elements in the Test Plan. Each Test Element
class contains the implementation of the Test Element’s behavior. Also, it has
a corresponding GUI class providing the configuration dialog for the Test Ele-
ment. Moreover, the GUI class is responsible for creating and modifying the Test
Element classes. Test Plans including the configuration of the Test Elements are
stored in JMX files, a JMeter-specific XML format.

Generating Probabilistic and Intensity-Varying Workload 135

4.2 Markov4JMeter

This section presents our JMeter extension called Markov4JMeter which allows
for using JMeter to define and execute a workload specification according to
the approach described in Section 3. A probabilistic workload specification as
defined in Section 3.1 can be integrated into a JMeter Test Plan using the two ad-
ditional Logic Controllers, Markov Session Controller and Markov State, added
by Markov4JMeter. Moreover, Markov4JMeter includes a Session Arrival Con-
troller and a Behavior Mix Controller corresponding to the components of the
conceptual workload generator presented in Section 3.2. The remaining two com-
ponents, workload generation engine and the pool of user simulation threads,
could be mapped to the JMeter components Engine and Thread Group includ-
ing the JMeter Threads. The Markov chains of the user behavior models are
read from external comma-separated value (CSV) files. Figure 7 illustrates how
the Markov4JMeter components are integrated into JMeter.

Session Controller. This Logic Controller constitutes the root of a probabilis-
tic session model within a Test Plan. According to the JMeter Test Elements,
the Markov Session Controller is divided into a Test Element class and a GUI
class including the configuration dialog.

The Test Element class contains the implementation of the session model com-
position and execution as described in Section 3.2. In each iteration, i.e., each
time a new session is to be simulated, the Markov Session Controller requests
a behavior from the Behavior Mix Controller and requests the Session Arrival
Controller to start the execution of this session. An iteration ends when the exit
state of the behavior model is reached. The configuration dialog allows the defin-
ition of the behavior mix and the configuration of the Session Arrival Controller.
A screenshot is shown in Figure 8(a). The behavior mix is defined by selecting
the respective behavior files and specifying the desired probabilities. The formula
defining the number of allowed active sessions during the test execution must
evaluate to a positive integer.

Markov State. Markov State Test Elements are added directly underneath
the Markov Session Controller. Each of these Logic Controllers represents an
application state. Any subtree of JMeter Test Elements can be added to a
Markov State representing the related deterministic state machine on the proto-
col layer of the application model. As the implementation of the Markov Session
Controller, the Markov State is divided into a Test Element class and a GUI
class.

The application transitions are configured within the configuration dialogs
of the Markov States. Figure 8(b) shows the configuration of the application
transitions starting in state S2 of the application model in Figure 3. The config-
uration dialog of the Test Element allows the definition of the state transitions
with guards and actions using JMeter’s variables and functions. The Markov
State S2 in Figure 8(b) contains the HTTP Samplers f.shtml and g.shtml which
are executed in this order according to the application model in Figure 3.

136 A. van Hoorn, M. Rohr, and W. Hasselbring

(a) Probabilistic Test Plan and configuration dialog of the Markov Session Controller
including the definition of the user behavior mix

(b) Probabilistic Test Plan and configuration dialog of the Markov State S2. Disabling
a transition is equivalent to a non-existing transition or to assigning a guard the
value false.

Fig. 8. Screenshots showing the probabilistic Test Plan and configuration dialogs of
the Markov Session Controller and a Markov State. The Test Plan corresponds to the
example from Section 3.

Generating Probabilistic and Intensity-Varying Workload 137

Session Arrival Controller. According to Section 3.2, the Session Arrival
Controller provides the methods enterSession() and exitSession() which are
called by the Markov Session Controller before starting to execute a new session.
Depending on the current number of active sessions and the configured work-
load intensity, a thread might get blocked until the session entrance is granted.
The active sessions function is specified as a Java expression (using BeanShell1)
which evaluates to an integer value. Markov4JMeter provides a variable for the
elapsed experiment time. BeanShell scripts in external files can be used as well.

Behavior Mix Controller. As mentioned above, the Behavior Mix Controller
assigns user behavior models to the Markov Session Controller based on the con-
figured behavior mix. The models are read from the behavior files and converted
into an internal representation which is passed to the Markov Session Controller.
Figure 8(a) show a Behavior Mix Controller configuration with two user behavior
models.

Behavior Files. The Markov chain of each user behavior model is stored in
a comma-separated value (CSV) file which can be edited with any spreadsheet
application. It contains the names of all Markov States underneath a Markov
Session Controller. The configuration dialog of the Markov Session Controller
allows to generate valid behavior templates for the current Test Plan. Figure 9
shows the behavior file of the user behavior model in Figure 4(a). Valid be-
havior file templates can be generated through the Markov Session Controller
configuration dialog (see Figure 8(a)).

, S0 , S1 , S2 , $
S0∗ , 0 . 00 , 0 .70 , 0 .10 , 0 .20
S1 , 0 .00 , 0 .50 , 0 .10 , 0 .40
S2 , 0 .10 , 0 .50 , 0 .00 , 0 .40

Fig. 9. User behavior model of Figure 4(a) stored in CSV file format. The entry state
of the model is marked with an asterisk (at most one). The column labeled with $
represents the transition probability towards the exit state.

5 Case Study

This section demonstrates how probabilistic and intensity-varying workload for
the iBATIS2 JPetStore Web application can be specified using our approach
and the corresponding tool Markov4JMeter, which have been presented in the
previous Sections 3 and 4. Section 5.1 provides a basic overview of the JPet-
Store application. The workload specification following our approach presented in
Section 3.1 is described in Section 5.2. Section 5.3 demonstrates how
1 http://www.beanshell.org/
2 http://ibatis.apache.org/

http://www.beanshell.org/
http://ibatis.apache.org/

138 A. van Hoorn, M. Rohr, and W. Hasselbring

Markov4JMeter is used to create a JMeter Test Plan corresponding to this spec-
ification. Section 5.4 provides some interesting measurement results of workload
generation runs which demonstrate the usefulness of our approach.

5.1 JPetStore

The iBATIS JPetStore is a Java Web application which represents an online
shopping store that offers pets. An HTML Web interface provides access to the
application. The product catalog is hierarchically structured into categories, e.g.,
“Dogs” and “Cats”. Categories contain products such as a “Bulldog”. Products
contain the actual items, e.g., “Male Adult Bulldog”, which can be added to the
virtual shopping cart, the content of which can later be ordered after having
signed on to the application and having provided the required personal data,
such as the shipping address and the credit card number.

5.2 Workload Specification

In order to define an application model including the session layer and the pro-
tocol layer underneath (cf. Section 3.1), we identified 29 protocol request types
provided by JPetStore on the HTTP protocol level. These request types were
categorized into 15 application services. We selected a subset of 9 services and
the corresponding 13 request types considered part of a “typical” user session.
The application transitions of the application model’s session layer were defined
based on the hyperlinks being present on the Web pages of the JPetStore. For
example, by entering the application state Home, the server would return the
JPetStore index page. This page provides hyperlinks to the product categories,
to the shopping cart, to the index page itself, and allows to sign on or off.

Figure 10(a) shows the session layer of the application model which contains
the 9 application states. The variables signedOn and itemInCart are used to store
additional state information. A user can only sign on and sign off if the value of
the variable signedOn is false or true, respectively. The variable itemInCart is
assigned the value true when an item is added to the shopping cart. A transition
to the state Purchase can only be selected when a user has signed on and has
added at least one item in the shopping cart.

The protocol layer is specified based on the 13 considered HTTP request
types. For each request type we determined its required HTTP request method,
the URI, and parameters to be passed on an invocation. The protocol state
machines corresponding to the application states Sign On and Purchase are
shown in Figure 10(b). In order to sign on, a user first invokes an HTTP request
of type signonForm using the HTTP protocol method GET. The server returns a
form asking for a username and a password. In a subsequent invocation, the user
passes the filled in data of the completed form by invoking the HTTP request
type signon. The variables userId and password are used as placeholders for
the username and password. The protocol state machine of the application state
Purchase shows the sequence of HTTP requests to be executed when purchasing.
We omitted the HTTP protocol details for this state.

Generating Probabilistic and Intensity-Varying Workload 139

View
Category

Home

Sign On

View
Product

View
Item

Add to
Cart

View
Cart

PurchaseSign Off

[!signedOn]/signedOn:=true

[!signedOn]/
signedOn:=true

/itemInCart:=true

[signedOn &&

itemInCart:=false
itemInCart]/

/signedOn:=false

[signedOn]/
signedOn:=false

[signedOn]/
signedOn:=false

[ite
m

In
C

a
rt]

(a) Session layer of the application model. The junction connector © is
used to combine a set of transitions from multiple states to the same
destination state (label considered label of all transitions in this set).

Sign On

signon
req.method="POST"
req.uri="/jpetstore/shop/signon.shtml"
req.header=<"...">
req.body=<username=${userId},

password=${password},
submit="Login">

signonForm
req.method="GET"
req.uri="/jpetstore/shop/signon.shtml"
req.header=<"...">
req.body=<>

Purchase

newOrderForm

newOrderData

newOrderConfirm

checkout

(b) Protocol state machines for two application states

View
Category

Home
View

Product

View
Item

View
Cart

Exit

Exit

Exit Exit

0.975
0.025

0.025

0.05

0.3

0.575

0.025

0.05

0.05

0.3

0.575

0.025

0.05

0.05

0.450 0.025

0.05

0.4

0.2

0.450

View
Category

Home

Sign On

View
Product

View
Item

Add to
Cart

View
Cart

PurchaseSign Off

Exit

Exit

Exit

Exit

ExitExit

Exit

0.975

0.025

1.0

0.025

0.225

0.725

0.025

0.025

0.175

0.775
0.025

0.225

0.175

0.55

0.025

0.025

0.5

0.45

0.025

0.9

0.1

1.0

1.0

(c) Markov chains of the user behavior models Browser (left) and Buyer

Fig. 10. The application model (the session layer displayed in (a); two of the nine
protocol-layer state machines displayed in (b)) and the two user behavior models (c)
specified for the JPetStore

140 A. van Hoorn, M. Rohr, and W. Hasselbring

Fig. 11. Probabilistic Test Plan for the JPetStore (corresponding to the underlying
formal workload specification displayed in Figure 10) and the transition configuration
of the Markov State Purchase

We defined one user behavior model representing users solely browsing
through the JPetStore and a second one where users tend to actually buy items
from the store. The Markov chains of both models are displayed in Figure 10(c).
For both models we specified a think time distribution ftt = N(300, 2002) which
is a parameterized normal distribution with mean μ = 300 and standard devia-
tion σ = 200, both values given in milliseconds.

5.3 Test Plan

As explained in Section 4.2, we created a probabilistic Test Plan for the JPetStore
application model and the two user behavior models presented in the previous
Section 5.2 using the additional Markov4JMeter Logic Controllers, Markov Ses-
sion Controller and Session Arrival Controller. The Test Plan, as well as the
configuration dialog of the Markov State Purchase including the definition of
the application transitions, are shown in Figure 11. The active sessions function
is configured to be read from an external BeanShell script. A Random Timer
Test Element provides the think time.

Identifiers for categories, products, and items are randomly selected using a
dedicated Markov4JMeter function before the respective request is submitted.
Assertions are inserted to detect application errors which are not reflected in
HTTP error codes. The server response of some requests is parsed for specific
text strings in order to make sure that the requests have been processed correctly

Generating Probabilistic and Intensity-Varying Workload 141

Fig. 12. Measured number of active sessions during a probabilistic and intensity-
varying workload generation run. The workload intensity was specified according to
the curve shown in Figure 5.

Fig. 13. Scatter plot (a) and probability density plot (b) of method response times
measured during a workload generation run with probabilistic workload and a constant
workload intensity

by the JPetStore. For example, after having signed on, the returned Web page
must contain the string “Welcome” as well as a hyperlink labeled “Sign Out”.
“Thank you, your order has been submitted”must appear after having confirmed
the order.

5.4 Measurement Results

Markov4JMeter has been used in a large number of workload generation ex-
periments with the JPetStore and the workload specification described in the
previous sections for the experimental evaluation of our research in the domains
of performance evaluation [15], anomaly detection and automatic fault localiza-
tion [16], as well as runtime reconfiguration of component-based software sys-
tems [17]. In this section we give two interesting measurement results of separate
workload generation runs to demonstrate the usefulness of our approach.

Figure 12 displays a curve of the measured number of active sessions during a
30-minute workload generation run. The workload intensity was specified accord-
ing to the curve shown in Figure 5. The number of active sessions was extracted
from the Web server access logs. Markov4JMeter shows the expected behavior
and varies the workload intensity following the input specification. The jitter is
caused by the measurement granularity (1 ms) and the queueing implementation
in the Session Arrival Controller.

142 A. van Hoorn, M. Rohr, and W. Hasselbring

For another experiment, Figure 13 shows the response time scatter plot and
the corresponding probability density plots of the Java method addItemToCart .
A constant workload intensity of 55 active sessions was specified for the entire
run. As indicated by its name, the method addItemToCart is always executed
when a users adds an item to the virtual shopping cart. The plots show that
sporadically significantly lower response times for method executions occur. We
found out that these low response times occur when a user adds an item with
the same identifier to the cart more than once within the same session. This only
requires a counter to be incremented. It is very likely that these low response
times would not have been uncovered without our probabilistic workload and
the random selection of item identifiers as described in Section 5.3.

6 Conclusions

This paper demonstrated our approach for specifying and generating proba-
bilistic and intensity-varying workload for Web-based software systems. The
workload specification provides a clean separation between application-specific
details including the specification of allowed sequences of service invocations
and all protocol-level details required to generate valid requests with the required
technical details, as well as the corresponding models of probabilistic usage based
on Markov chains. We presented a conceptual workload generator which gener-
ates workload based on the described specification. By including the specification
of the (possibly varying) workload intensity, long-term load tests with realistic
workload intensity profiles can be performed.

The corresponding workload generation tool Markov4JMeter has been imple-
mented as an extension for the popular workload generator Apache JMeter. By
being based on JMeter, probabilistic workload specifications for any protocol
supported by JMeter can be executed. In a case study, we applied the work-
load generation technique to the JPetStore Web application by first specifying
the underlying workload model and then creating the Test Plan executable by
JMeter extended by Markov4JMeter.

Markov4JMeter is freely available at [14]. It is being used to generate prob-
abilistic and intensity-varying workload for the evaluation of research in the
domain of software timing behavior evaluation, anomaly detection and auto-
matic fault localization, as well as runtime reconfiguration of component-based
software systems.

References

1. Menascé, D.A.: Load testing of web sites. IEEE Internet Computing 6(4), 70–74
(2002)

2. Barford, P., Crovella, M.: Generating representative web workloads for network
and server performance evaluation. In: Proceedings of the ACM SIGMETRICS,
pp. 151–160. ACM, New York (1998)

3. Apache Software Foundation: JMeter, http://jakarta.apache.org/jmeter/

http://jakarta.apache.org/jmeter/

Generating Probabilistic and Intensity-Varying Workload 143

4. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Request for comment (RFC) 2616: Hypertext Transfer Protocol – HTTP
(1999)

5. Menascé, D.A., Almeida, V.A.F., Fonseca, R., Mendes, M.A.: A methodology for
workload characterization of e-commerce sites. In: Proceedings of the ACM Con-
ference on Electronic Commerce (EC 1999), pp. 119–128. ACM, New York (1999)

6. Whittaker, J.A., Thomason, M.G.: A markov chain model for statistical software
testing. IEEE Transactions on Software Engineering 20(10), 812–824 (1994)

7. Li, Z., Tian, J.: Testing the suitability of markov chains as web usage models.
In: Proceedings of the 27th International Conference on Computer Software and
Applications (COMPSAC 2003), pp. 356–361. IEEE, Los Alamitos (2003)

8. Ballocca, G., Politi, R., Ruffo, G., Russo, V.: Benchmarking a site with realistic
workload. In: Proceedings of the 5th IEEE International Workshop on Workload
Characterization (WWC-5), pp. 14–22. IEEE, Los Alamitos (2002)

9. Krishnamurthy, D., Rolia, J.A., Majumdar, S.: A synthetic workload generation
technique for stress testing session-based systems. IEEE Transactions on Software
Engineering 32(11), 868–882 (2006)

10. Shams, M., Krishnamurthy, D., Far, B.: A model-based approach for testing the
performance of web applications. In: Proceedings of the International Workshop on
Software Quality Assurance (SOQUA 2006), pp. 54–61. ACM, New York (2006)

11. Peña-Ortiz, R., Sahuquillo, J., Pont, A., Gil, J.A.: Modeling continuous changes of
the user’s dynamic behavior in the WWW. In: Proceedings of the 5th International
Workshop on Software and Performance (WOSP 2005), pp. 175–180. ACM, New
York (2005)

12. Arlow, J., Neustadt, I.: UML 2 and the Unified Process: Practical Object-Oriented
Analysis and Design, 2nd edn. Addison-Wesley, Reading (2005)

13. Dijkstra, E.W.: Cooperating sequential processes. In: Genuys, F. (ed.) Program-
ming Languages, Academic Press, London (1965)

14. van Hoorn, A.: Markov4JMeter, http://markov4jmeter.sourceforge.net/
15. van Hoorn, A.: Workload-sensitive timing behavior anomaly detection in large soft-

ware systems (September 2007), Master’s thesis (Diplomarbeit), Department of
Computing Science, University of Oldenburg, Germany

16. Rohr, M.: Workload-sensitive Timing Behavior Anomaly Detection for Automatic
Software Fault Localization. PhD thesis, Department for Computing Science, Uni-
versity of Oldenburg, Oldenburg, Germany (2008) (work in progress)

17. Matevska, J., Hasselbring, W.: A scenario-based approach to increasing service
availability at runtime reconfiguration of component-based systems. In: Proceed-
ings of the 33rd Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), pp. 137–144. IEEE, Los Alamitos (2007)

http://markov4jmeter.sourceforge.net/

Comparison of the SPEC CPU Benchmarks with

499 Other Workloads Using Hardware Counters

Lodewijk Bonebakker

Sun Microsystems Laboratories,
Menlo Park, CA, USA

lodewijk.bonebakker@sun.com
http://research.sun.com

Abstract. This work extends an existing workload comparison approach
used for simulation based metrics to computer system based metrics. We
apply this approach using processor hardware counters and compare char-
acterizations of spec cpu2000 and spec cpu2006, against real (commer-
cial) workloads and other benchmarks collected on the same computer sys-
tem architecture. Using Independent Component analysis we reduce the
many dimensional workload characterization space into a lesser dimen-
sional representative space prior to comparing the distribution of work-
loads. We find that the spec cpu benchmarks are for the most part repre-
sentative on the identified principal components, with notable exceptions.

Keywords: SPEC CPU2000, SPEC CPU2006, workload characteriza-
tion, workloads, benchmark, comparison.

1 Introduction and Outline

The spec cpu benchmark suites are one of the most successful and authorita-
tive benchmark suites available. Nearly every vendor of computer systems and
processors publishes results on spec cpu. SPEC is a collaboration of industry
and academia, and benchmarks are selected from candidates submitted by in-
dustry, academia and other interested parties. For each revision of the spec cpu
benchmark, interested parties are asked to submit candidate workloads. During
the selection process the SPEC workgroup has to balance competing commercial
interests to retain a broad set of benchmarks thought to be broadly represen-
tative of the computing space. SPEC maintains as goal spec cpu’s relevance
as a trusted means of comparing processor performance on compute intensive
applications [1].

While the representativeness of spec cpu is assumed, given the involved
process of selecting component benchmarks, there is little evidence in the scien-
tific literature to either support or challenge it. A few comparisons have been
made evaluating spec cpu and other benchmark representativeness for specific
areas like mobile computing or multi-media applications [2,3] and (for an older
version of spec cpu) with commercial applications [4]. Much of this earlier

S. Kounev, I. Gorton, and K. Sachs (Eds.): SIPEW 2008, LNCS 5119, pp. 144–153, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://research.sun.com

Comparison of the SPEC CPU Benchmarks with 499 Other Workloads 145

work concentrates on specific workload characteristics like cycles per instruc-
tion, branch mis-prediction rates and cache hit-ratios. The popularity of spec
cpu and its position as de facto standard raises concerns regarding its use and
abuse in computer system architecture evaluation [5].

In this work we extend an existing method for determining similarity between
simulated workloads to use system data. This approach was first introduced in
[6], and adopted and extended since, see for example [7,8,9]. This approach was
applied to the question of benchmark subsetting, with the aim of reducing the
number of benchmarks under consideration without losing generality [10]. [8,9]
examine similarity within spec cpu2000 and their results indicate that there
exists considerable redundancy within spec cpu2000. Novel in our approach is
that we rely exclusively on processor hardware counters to provide the informa-
tion with which we perform our comparison and similarity analysis.

Modern computer processors have a rich set of on-chip registers that can be
used to track processor events. We concentrate on workloads characterized on
the UltraSPARC III+TM processor, running at 900 MHz. We compare spec
cpu2000 and spec cpu2006 against a set of 447 commercial workloads and
52 common benchmarks. These workloads include databases, web-servers, high-
performance computing, and span the diversity of customers of Sun Microsys-
tems, Inc. Workload characterization was performed by collecting processor
hardware counter and operating system statistics made available through the
SolarisTM operating system on UltraSPARC III+ based computer systems.

The outline is as follows; In Section 2 we describe our workload set, both
spec cpu2000, spec cpu2006 and the commercial workloads and benchmarks.
In Section 3 we describe our data collection and reduction process. Section 4
describes dimensionality reduction of our data-set, constructs the workload space
for comparison and presents the data. In Section 5 we discuss observations made
during evaluation. In Section 6 we summarize and make recommendations for
future research.

2 Workload Set Composition

Our set of 1089 workloads consists of 260 spec cpu2000 and 330 spec cpu2006
characterizations, combined with a further 447 collected commercial workloads
and 52 other benchmarks. For both spec cpu2000 and spec cpu2006 a full set
of workload characterizations of spec cpu rate were collected for 1,2,4,8 and 12
processors. The system used was an Sun FireTM4800, with 12 UltraSPARC III+
processors at 900MHz, with 8MB of cache and 24GB of total memory. The system
has three processor memory boards, each with 4 processors and 8GB ofRAM. Dur-
ing runs with fewer than 12 processors the unneeded processors were deactivated.

We used the Sun StudioTM11 compilers, the recommended compiler options
and optimizations and compared our achieved SPEC numbers, both base, peak
and rate, with those posted for the same processor type and clock speed on the
SPEC website [1]. We found that our results, with our workload characterization
instrumentation included, differed by less than 1% from the published results.

146 L. Bonebakker

The commercial workloads and other benchmarks were collected in the bench-
mark centers at Sun Microsystems, Inc. These commercial workloads reflect
a cross-section of workloads common to customers of Sun Microsystems, Inc.
Workloads include, SAP, ORACLE, PeopleSoft and Siebel database and applica-
tion server workloads; data warehouse and decision support workloads like SAS,
supply chain management suites like Manugistics, high performance computing
applications like Fluent and Linpeak as well as Java, cryptography and mes-
sage broker applications. The other benchmarks are for example SPECweb{99,
99SSL, 2005}, SPECjAppServer{2001,2002, 2004}, TPC-C and TPC-W. Overall
the collected commercial workloads and other benchmarks cover a large segment
of the workload space. An even larger number of workloads were collected on
a range of UltraSPARC III+ processors with clock speeds of either 900MHz,
1050MHz, or 1200MHz, but we limit ourselves to only workloads collected on
systems with 900MHz processors.

While processing the collected workloads, we encountered many iterations, up
to 12 in one case, of the same application. During subsequent analysis we found
that in many cases the iterations differed not only by role (application server,
database server, client), system composition (number of processors) and tuning,
but also by data-set. Based on results from [11], we consider the combination
of an application with a data-set to be a distinct workload. Subsequently, the
447 collected workloads are based on 97 unique applications and 248 distinct
data-set combinations.

3 Data Collection and Reduction

To collect data in a standardized manner from all systems involved, we used a
measurement script WCSTAT [12], which is internal to Sun Microsystems, Inc.
This script standardizes data collection by specifying the sequence and duration
in which data collection utilities are run. WCSTAT performs data collection in
two phases, first the standard system utilities for 600 seconds, followed by 900
seconds of hardware counter sampling. These two phases are designed to mini-
mize measurement tool impact on the collected workload data. The disadvantage
of this two phase approach is that the workload under study must be stable for
the full 1500 seconds of measurement [11]. This defines our stability criterion,
since the workload cannot have significant deviations of behavior during mea-
surement, otherwise we risk misrepresenting workload behavior. [13] provides an
analysis of expected sampling accuracy.

Within WCSTAT the operating system utilities vmstat, iostat, mpstat, and
netstat are used to characterize workload at the operating system level. The
hardware counters are sampled using cpustat, and for convenience all (with the
exception of two user defined) hardware counters are sampled. The UltraSPARC
III+ has two hardware counter registers, so only two hardware counters can
be sampled at any given time. To sample the full set of available hardware
counters, the registers are set to a specific hardware counter context and sampled
for one second. After reading the registers, cpustat selects the next hardware

Comparison of the SPEC CPU Benchmarks with 499 Other Workloads 147

counter context. This allows us to sample all hardware counters in about 32
seconds of measurement. Overall the 900 second measurement interval gives us
circa 28 measurements per hardware counter context. This further emphasizes
why workload stability is an essential requirement for this work. In order to
achieve this workload stability while measuring the spec cpu2000 benchmarks,
we repeated the benchmark throughout the full 1500 seconds of measurement.
We made sure that no start-up effects impacted data collection on the spec cpu
benchmarks. The longer duration of the spec cpu2006 benchmarks usually did
not require repeated runs. Based on prior observations of the spec cpu2006
component benchmarks, we chose to use the first 1800 seconds as representative
of the whole benchmark. In a prior effort we fully characterized spec cpu2006
for the duration of each component benchmark, but corruption of the data-set
prior to processing necessitated this shortcut.

For each workload, the measured data are stored in a collection of text files,
each with their own specific format. We use a java based application to parse
each data file and upload the results into tables of a database. Each column
of measured data maps to a table in the database. The database preserves the
original measured values and their timestamps relative to start of measurement,
allowing cross-referencing of any anomalous events.

Measured data are not ready for analysis. From our raw data-set of 1292 col-
lected workloads we removed those cases where either the workload was not in
steady state or we suspected interference from our measurements. A full discus-
sion of the rejection criteria and their validation is beyond the scope of this paper,
but we follow the procedure discussed in [11]. In short: steady state verification
is based on statistical trend analysis. If there is sufficient evidence of a trend,
the workload is rejected. We proceed with the remaining workloads. We stan-
dardize the collected data to a single processor and scale to a cycle count of one
billion cycles per second. After scaling we standardize on instruction count. The
reduced data are now ready for analysis. In total 1292 workloads were measured
but the stability requirement rejected 203, leaving a data-set of 1089 workloads.
Of these accepted workloads, 260 are spec cpu2000, 330 are spec cpu2006,
447 are commercial workloads and 52 are other benchmarks.

4 Dimensionality Reduction and Workload Comparison

We have 1089 workloads with each 72 metrics. These 72 metrics include system
metrics from iostat, vmstat, netstat, and mpstat. Since we want to under-
stand spec cpu representativeness, we accept only cpustat based metrics from
our data-set. This reduces the total number of metrics under consideration to 46.
As mentioned before, these metrics reflect the hardware counters available on
the UltraSPARC III+ processor. For example [14], cyclecnt, dcrd, dcrdmiss,
dcwr, dcwrmiss, dispatch02ndbr, ..., ecicmiss, ecmisses, ecrdmiss, ...,
fapipecompletion, fmpipecompletion, icmiss, icmisscancelled, icref,
instrcnt, ... , pcsnoopinv, ..., sisnoop, wcmiss, wcscrubbed,
wcsnoopcb, wcwbworead. It is our goal to make qualitative statements

148 L. Bonebakker

regarding the similarity of these workloads based on the hardware counters,
and we define similarity to be the same as proximity in a N -dimensional work-
load space. We now need to construct such a workload space. The first step is
to normalize the metrics used and then apply dimensionality reduction.

We use a log-based standardization to accommodate the large differences
in magnitude within the data-set. We standardize using x′ = log(x + 1) and
then normalize, x′ = x−μx

σx
, following [15]. The latter step normalizes the log-

standardized data around the origin. We note that the hardware counters rarely
measured less than 100 events over the 1-second sample interval, thus the error
introduced by x + 1 is small.

The large number of measured metrics and the presence of strong correla-
tions between some of these metrics, make the use of dimensionality reduction
techniques a practical necessity. Dimensionality reduction techniques reduce the
number of dimensions under consideration with little or no loss of information.
From the literature [8,9,10,16], we expect our set of 46 metrics to contain a signif-
icant amount of redundancy. The same literature uses either Principal Compo-
nent Analysis [8,9,10] or Independent Component Analysis [16] as their primary
means of reducing the many-dimensional data-set into a lesser dimensional set
without throwing away information.

Principal Component Analysis (PCA) [17] is the common choice. PCA re-
duces dimensionality through a linear transformation that transforms the data
to a new coordinate system such that the variance projections of the data comes
to lie along coordinates [17]. The greatest variance is projected on the first coor-
dinate and is named the first principal component, the second greatest variance

●

●
● ●●●

●

●
●

●
●
●

●●●●

●

●

●
●

●

●

● ●
●

●
●

●

●●

●

●

●●

●●
●

●

● ●●

●
●

●●●

●
●●●●

●

●
●

●

●

●
●

●
●

●

●
●●●●●

●
●●●●

●●●●●●●
●●●●

●

●●●
●

●

● ●
●

●●●
●

●●

●

●
●

●

●
● ●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●● ●
●

●

●

●●

●

●

●

●
●●● ●

●

●●

●
●

●●●
●

●

●

●

●

●

●

●
●

●

●● ●●●●●●●●●●

●●

●

●

●

●

●

●

●

●●●

●●●

●●●●

● ●●●

●●

●
●

● ●

●

●●●

●●
●

● ●

●

●
●

●

●●

●

●

●

●●

●

●●

●

●●●

●

●●● ●

●●
●

● ●

●

●●
●
●

●●●●●●●
●●●●●

●●●

●●

● ●●
●●●

●●●●●●●●●●●●●●●●●●

●●
●

●●●

●
●●

●

●
●

●
●

●●
●●●

●

●
●

●

●
● ●●
●

●

●

●

●
●

●

●

●

●●

●
●●

●

● ●
●●

●

●

●●

●

●

● ●●●
●

●

●

●●●● ●
●●●

●

●
●●

●
●●

●●

●●

●●
●

●

●

●

●

● ●●
●●●●

●

●

● ●

●

●●●●●●

●

●

●

●
● ●

● ●● ●●
●
●

●

●
●
●

● ●●

●
●

●

●

●
● ●

●

● ●●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●● ●●●
●

●●●● ●

●
●

●● ● ●●

−2 0 2 4

−
2

0
2

4
6

●

●●●●

●

●

●

●
●
●

● ●● ●

●

●●●

●

●

●

●

●

●

●

●
●● ●●●●

●

● ●●●●
●

●●
●●● ●

●● ● ●●●

●

● ●

●
●

●

●
●

●●
●●●●●● ●

●

●●

●

●
●

●

●

●

●

●

●●

●

●●●
●

●

●

●
●

●

●●●

●
●
●

●●●

●

●

●
●

●

●

●
●

●

●
●

●
●
●
●●●
●●

●

●● ●●
●●●

●●●●●
●

●

●

●

●●●

●

●
●
●
●● ●●

●●

●

●●●

●

●●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●●●

●

●
●

●

●
●

●

●

●
●

●

● ●

●●●

●● ●
●
●

●

●

●

●

●●

●

●
●

● ●
●● ●●

●●●●●●

●
● ●

●

●
●
●

●

●●●
●

●●●

●
●
●
●

●

●

●●●●

●

●

●● ●

●●●

●

●● ●
●

●
● ●● ●

●

●
●

●

●●
●●●

●
●●●

●●●

●

●

●

●

●

●●

●●●

●

●

●●●●●●●
●●●●●

●●
●●●

●
●●●
●

●
●●●●●●●●●●●●●●●●

●

●●
●●

●●●●
●

●

●

●
●●●●●

●●●
●

●

●

●

●
●

●

●
●●●

●
●

●

●

●

● ●
●

●
●●●●●
●

●

●
●

●●●
●

●
●●●

●
●

●

●●

●
●

●● ●●

●
●●
●

●
●

●
●●

●●
●●

●

●

●

●

●

●●●

●●
●
●

●

●

●●
●

● ●●●●●● ●

●
●

●
●

●

● ●
●●

●●

●●●● ●●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●●● ●

●

●
●

●

●

●

●

●

●
●
●●●

●
●●
●●●

●

● ●
● ●

●●
●

−6 −4 −2 0 2

−
3

−
1

0
1

2
3

●

●●

●

●

●

●●
●●
●

●
●●●

●
●

●
●

●
●

●
●

●

●●●

●●

●
●

●●●

●
●

●●●●
●

●

●

●
● ●

●

●●

●●●

●

●

●
●

● ●

●

●
●

●

●●

●
●●●

●

●
●

●
●

●

● ●

●

● ●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●
●●

●

●●●●
●

●

●

●

●

●

●
●

●
●● ●

●●

●

●●
●●●

●●
●●●

●
●

●

●

●

●

●
●●

●

●
●●●●

●●
●●

●

●

●

●

●●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●
●

●●

●
●●●●●

●
●

●

●

●

●●

●

●

●
●
●

●

●
●

●●●●

●

●

●
●
●●

●

●
●

●
●

●●●

●
●

●

●

●

● ●
●

●

●
●

●

●

●

●●

●

●●

●

●●
●

●

●●

●

●
●

●

●

●

●

●
●●

●●

●

●●

●●●●●
●●●

●

●
●

●

●●●

●
●

●
●

●

●●●●●●●●●
●●●●●●●

●

●

●

●

●
●●●

●●

●

●

●●
●

●●●

●●●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

● ●
●

●
● ●

●
●●

●
●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●
●

●

●●

●●
●●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●●
●

●

●●

●●

●

●
●

●

●
● ●●

●

●●

●
●

●
●●
●●

●

●
●

●

●
●

●

●
● ●

●

●

●
●

●

●
●

●

●

● ●

●

●
●

●

●
●●

●

●

●
●●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●
●

−2 0 2 4

−
2

−
1

0
1

2

●
●
●

●

●

●

●

●

●
●
●

●●

●
●

●

●

●
●

●

●

●

●

●

● ●

●
●●

●

●

●●●

●

●

●●●●

●

●●
●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●●

●●●●

●

●
●
●

●

●

●

●

●

●● ●

●●

●

●

●●

●

●

●

●

●

●

●
●●

●
●●●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●● ●

●

●
●

●

●●●●
●●●

●●●
●

●

●
●

●
●

●●
●

●

●

●
●
●●

●●

●●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●●

●●●●●●

●●

●

●

●

●●

●

●

●
●●

●●●

●
●●● ●

●

●●

●●

●

●

●

●
●

●●●

●

●●●
●●
● ●

●

●

●

●

●

●

●●
●

●●

●

●●●

●

●●

●

●

●

●

●●

●

●
●●

●
●

●●●●
●
●●

●●●●●●●

●

●
●

●
●●

●●
●

●●●●●●●●●●●●●●●●
●

●

●

●

●
●●●●

●

●

●

●

●
●

●
●●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●●●

●
● ●

●
● ●

●

●

●
●●
●

●

●

●
●

●●

●

●●

●●

●●

●
●

●
●

●

●
●●

●

●

●
●
●

●

●

●

●

●

●

●
●

●●●●

●

●

●
●●
●

●
●●

●●

●
●

●
●●●
●

●

●

●

●

●

● ●

●

●

●●

●

●●

●

●
●

●
●

●
●

●

●
● ●●

●

●
●●

●

●●
●

●
●

●

●

●

●

●
●

●
●

●

●●

−6 −4 −2 0 2

−
2

−
1

0
1

2 ●

●
●

●

●
●

●
●●
●●

●●
●●

●

●

●
●

●

●●●

●
●

●

●

●●

●

●

●●●

●

●

●●●●

●
●

●

●●

●● ●●
●●●

●●
●

●

●
● ●

●●
●

●●
●●●●●●

●●

●

●

●

● ●

●

●

●

●●

●

●

●●
●

●
●
●●● ●

●
●

●
●●

●●●
●

●
● ●● ●

●

●

●

●

●
●

●●●
●●

●

●●

●●
●
●●●

●●●
●●●●

●●

●
●

●
●

●

●●

●

●● ●●
●●

●

●●
●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●●●

● ●
●

●

●
●

●
● ●

●

●

●●●●●

●●

●●●●●●
●●

●
●
●●

●
●
●●

●

●

●

●

●

●

●●● ●
●

●
●●●

●

●
●

●

●

●●●

●

●

●●

●

●

●

●

●●
●

●

●

●

●●

●

●●

●

●

● ●
●

●●
●

●

●

●

●

●

●

●●●●

●

●

●●
●
●
●
●●●●●
● ●●

●
●●

●
●

●

●
●

●●●●●●●●●●●●●●●●●

●

●
●

●

●
●●●

●

●
● ●
●
●

●
●
●●

●●●

●

●
●

●

●
●

●●

●●
●

●

●

●

●

●●

●

●●●● ●
●
●
●

●
●

●●
●
●

●
●●●

●

●

●

●●●

●

●

●
●

●

●

●

●● ●●
●

●
●● ●●

●●●
●

●

●

●

●●●

●
●

●●
●

●●

●

●

●
●

●
●

●●
●

●
●

●
●
●

●
● ●

●●

●●
●
●

●●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●
● ●

●●

●

●

●

● ●
●
●●

●

●
●

●

●●
●

●●

●

●

●

●
●

●●●

−2 0 2 4

−
2

0
2

4

●
●●

●

●●● ●●
●

●
●

●
●

●
●●●● ●● ●●

●

●

●
●

●●

●
●

●●●
●

●
●●●●

●
●●

●
●●

●●
●●●●

●
●

●

●●

●●
●●●●●

●●●● ●

● ●●
●

●

●

● ●●●● ●●
●●

●●
●

●●●
●●●●●●●

●●●●
●

●●●●

●

●
●

●
●

● ●●
●●●●●●

●

●●●●●●●
●●● ●●●

●

●

●
●●

●
●●

●●●●
●●●●

●

●●

●

● ●

●

●●

●

●●
●● ●

●●

●

●

●

●
● ●●●

●
●

●●

●
●

●
●● ●

●●●

●●●
●
●●●●●

●

●

●

●

●●●

●
●

●●●
●●

●●●●●●
●●

●●

●

●

●

●

●

●
●●

●●●
●●●●

●

●

●●
●●

●

● ●
●

●

●●●

●
●●●●

●

●●
●

●
●

●●

●

●●

●

●●

●

●●● ●
●●

●
● ●

● ●

●
●

●
●●

●●
●●●●●●●●●●●●
●●●

●●

●●●●●● ●●●●●●●●●●●●●●●●

●

● ●●●●●●
●●

●
●●

●●
●●●

●●●
●

●

●

● ●
●

●

●●
●

●

● ●
●

●
● ●

●
● ●

● ●● ●
● ●●

●●

● ●● ●

●●●
●

● ●

●

●
●

●
●

●●
●

●
●

●
● ●●●

●
●●
●●

●●●

●●

●●
●●●●●

●●
●

●

●●● ●●●●●●

●

●
● ●

●●●●●●●●●

●
●
●● ●●●

●
●●

●

●
●●

●
●

●

● ●

●

●●

●

●

● ●

●

●●

●

●

●

●

●

●

●●● ●●●
●●
●

●● ●
●

●
●●●●●

−4 −2 0 2

−
2

0
2

4
6

●● ●
●

●

●●
● ●

●
●

●●●●

●
●●●

●

●
●

●
●●

●
●

●●
●●
●●●

●
●●●●

●

●●
●

●●●

●
●

●●●●

Fig. 1. The 12 Independent Components, normalized for instructions, plotted pairwise.
Legend: ◦ workloads, • benchmarks, × spec cpu2000, + spec cpu2006).

Comparison of the SPEC CPU Benchmarks with 499 Other Workloads 149

A comparison of SPEC CPU with workloads and benchmarks

d=1

0

0.2

0.4

0.6

0.8

1

oooooooooo

ooooooo o

−2 0 2 4 6

SPEC2000
SPEC2006
Workloads

Benchmarks

d=2

o ooooooooo oooo oooo

ooo oooo o

−2 0 2 4 6

d=3

oooooooooooooooooooo o o

oo

−6 −4 −2 0 2

d=4

0

0.2

0.4

0.6

0.8

1

oo ooooooooooooooooooooooooooooo

o o o

o oo

−3 −2 −1 0 1 2 3 4

SPEC2000
SPEC2006
Workloads
Benchmarks

d=5

0

0.2

0.4

0.6

0.8

1

oooooo o

o

−4 −2 0 2 4

SPEC2000
SPEC2006
Workloads

Benchmarks

d=6

−2 −1 0 1 2 3

d=7

ooooooooooooo ooo o

oo

−8 −6 −4 −2 0 2 4

d=8

0

0.2

0.4

0.6

0.8

1

−3 −2 −1 0 1 2 3

SPEC2000
SPEC2006
Workloads
Benchmarks

d=9

0

0.2

0.4

0.6

0.8

1

o

oooooo

o

−4 −2 0 2 4 6

SPEC2000
SPEC2006
Workloads

Benchmarks

d=10

oooo

oooo oooooooooo

oooooooooo ooooooooooooooooo o

−4 −2 0 2 4 6

d=11

o

oooo o

−4 −2 0 2 4

d=12

0

0.2

0.4

0.6

0.8

1

o

oooo oooooooooooooooo o

o

−2 0 2 4 6

SPEC2000
SPEC2006
Workloads
Benchmarks

Fig. 2. Cumulative distribution plot along each dimension of the reduced data-set for
spec cpu2000, spec cpu2006, the real workloads and the other benchmarks. Metrics
standardized per processor instruction.

on the second coordinate, and so on. PCA can be used for dimensionality re-
duction in a data-set while retaining those characteristics of the data-set that
contribute most to its variance, by keeping lower-order principal components

150 L. Bonebakker

and ignoring higher-order ones. Such low-order components often contain the
“most important” aspects of the data.

While PCA provides dimensionality reduction by explaining the variance, In-
dependent Component Analysis [17,18,19], uncovers the underlying data compo-
nents. Independent component analysis (ICA) is a method for finding underly-
ing factors or components from multivariate (multidimensional) statistical data.
What distinguishes ICA from other methods is that it looks for components
that are both statistically independent, and nongaussian [19]. The method finds
the independent components by maximizing the independence of the estimated
components. Based on the work in [11] we select ICA to reduce the dimension-
ality of our data-set, specifically we use FastICA [20] as implemented in R [21].
We use PCA as a heuristic to determine the likely number of ICA dimensions,
a pre-requisite for FastICA.

It is common when comparing processors to use some form of standardization.
The most common standardizations are instructions (as in CPI), or cycles (as
in IPC). For brevity we evaluate only for per instruction standardization (CPI).
After applying standardization, normalization and dimension reduction, we are
left with a reduced, 12 dimensional workload space.

We present the collected data and evaluate the degree to which the spec
cpu2000 and spec cpu2006 benchmark collections represent the other work-
loads. spec cpu aims to be representative of compute intensive workloads that
stress the processor and memory hierarchy. Since many of the collected work-
loads and benchmarks exhibit significant I/O and coherence traffic, we expect
to find differences between spec cpu and the collected workloads and other
benchmarks. These differences will be visible in the coverage and distribution
in the workload space. We visualize these distributions in two ways - first we
make 2D plots of the workload distribution for two consecutive dimensions in the
workload space, plotted in Figure 1. Anomalies in the distribution are visible as
differences in locality. Second we compare the cumulative distribution functions
for spec cpu2000, spec cpu2006 and the remaining workload and benchmarks
with each other, plotted in Figure 2. Differences in distribution will be empha-
sized in the cumulative distributions and their respective barplots, allowing us
to see where differences in distribution are most pronounced. This approach was
inspired by the two-sided Kolmogorov-Smirnov test [22].

5 Observations

We show that in the reduced workload space spec cpu does not provide full
representativeness. This result should not be unexpected. The workloads and
other benchmarks, e.g., TPC-C, SPECjAppServer, contain significantly more
I/O and coherence traffic than the single threaded, processor centric spec cpu
benchmarks. Next we investigate if any of the observed effects are due to data
artifacts and workload selection effects.

The collection of real workloads runs the gamut from database workloads and
web-servers to the high performance workloads found on today’s largest clusters.

Comparison of the SPEC CPU Benchmarks with 499 Other Workloads 151

We believe that while we may not have fully captured the correct quantitative
distribution of all workloads in our data-set, we have captured their diversity.
Looking at the distributions, specifically the barplots for the different standard-
izations, it is clear that dynamic range is also a good indicator of population
differences. Both distribution and dynamic range cannot easily be argued away
as just a population artifact, since 447 is considered an adequate sample for
many populations. What is clear from Figure 2 is that the set of collected bench-
marks more accurately represents the collected workloads than spec cpu. We
use this as a bootstrap validation to show that this approach can make sufficient
distinction.

The next issue is that of data transformation, why did we chose ICA instead
of the more commonly used and easier to understand PCA? Where PCA ex-
plains variance with each principal component, ICA reveals the hidden factors
that underlie the structure of the data. PCA would have given the maximum
correlations between the different processor hardware counters. Based on the
evaluation in [11] showing that ICA has better distinctive properties when used
on hardware counter data, we chose ICA to extract the hidden factors explaining
the structure of the data. The downside of using ICA is that it is much harder to
relate the independent components back to physical artifacts in the original sys-
tem. A related issue is the use of dimensionality reduction in the first place. We
believe that the many dimensions of our original data-set and the multitude of
hidden, non-linear relations between the underlying metrics, make it impossible
to do any meaningful research without dimensionality reduction.

We note that there are also considerable differences between spec cpu2006
and spec cpu2000, see for example d = 1, 4, 5, 8 in Figure 2. Relating this back
to the remarks by Citron in [5], we can see how cherry picking workloads from
spec cpu, instead of using the whole set, can greatly impact coverage and sub-
sequently representativeness on the important characteristics. Inversely, if we
have workload characterization data on the workloads spec cpu aims to rep-
resent, we can quantitatively determine a representative sets for each processor
under consideration. The approach followed in this work can easily be ported
to different platforms, requiring only a mechanism for sampling the hardware
counter registers during benchmark execution. Taking the cross-section of these
sets could then be used to construct a new spec cpu benchmark. The repre-
sentativeness of the chosen cross-section can then immediately be quantitatively
evaluated for all contributing processors and metrics of interest.

6 Summary and Conclusions

In this work we have presented an approach that uses metrics readily obtainable
from real computer systems to provide a quantitative evaluation of representa-
tiveness between chosen sets of workloads. Using a standardized measurement
setup, we characterized a total of 1089 workloads, 260 characterizations of spec
cpu2000 component benchmarks, 330 characterizations of spec cpu2006 com-
ponent benchmarks, and a set of 447 real workloads and 52 other benchmarks.

152 L. Bonebakker

The workloads run the gamut from database and web-server workloads to pop-
ular high performance computing workloads, while the other benchmarks con-
tain benchmarks like TPC-C, TPC-W and SPECjAppServer{2001,2002,2004}.
Each workload is described using 72 metrics, of which 46 are hardware coun-
ters. Before comparison, the metrics are standardized by instructions, and then
log-normalized. The dimensionality of the data-set is reduced using Independent
Component Analysis and evaluation takes place in this reduced workload space
by examining the distribution properties for the different workload sets.

We have applied the approach to a set of 1089 workloads and evaluated the
representativeness of spec cpu and the benchmarks relative to the other 499
workloads using only the hardware counters. We showed that for most inde-
pendent components in the reduced workload space spec cpu is representative,
but that there are distinct cases were spec cpu is not representative. We be-
lieve that the I/O and coherency behavior of the workload population explains
the difference. The included sample of other benchmarks is found to be more
representative of the workload sample.

This approach is efficient and may be used to evaluate representativeness of
a subset of workloads or benchmarks relative to a larger population. Inversely,
this approach can be used to quantitatively select a representative set of bench-
marks for a given population of workloads. Future research should evaluate if
and how this approach can be adapted for use in the creation of the next generat-
ion spec cpu.

References

1. Standard Performance Evaluation Corporation, http://www.spec.org/
2. Diefendorff, K., Dubey, P.: How multimedia workloads will change processor design.

Computer 30(9), 43–45 (1997)
3. Antochi, I., Juurlink, B., Vassiliadis, S., Liuha, P.: GraalBench: a 3D graphics

benchmark suite for mobile phones. In: LCTES 2004: Proceedings of the 2004 ACM
SIGPLAN/SIGBED conference on Languages, compilers, and tools for embedded
systems, pp. 1–9. ACM Press, New York (2004)

4. Maynard, A.M.G., Donnelly, C.M., Olszewski, B.R.: Contrasting characteristics
and cache performance of technical and multi-user commercial workloads. In:
ASPLOS-VI: Proceedings of the sixth international conference on Architectural
support for programming languages and operating systems, pp. 145–156. ACM
Press, New York (1994)

5. Citron, D.: MisSPECulation: partial and misleading use of SPEC CPU2000 in
computer architecture conferences. In: ISCA 2003: Proceedings of the 30th annual
international symposium on Computer architecture, pp. 52–61. ACM Press, New
York (2003)

6. Eeckhout, L., Vandierendonck, H., De Bosschere, K.: Workload design: selecting
representative program-input pairs. In: Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques, pp. 83–94. IEEE Computer
Society, Washington (2002)

http://www.spec.org/

Comparison of the SPEC CPU Benchmarks with 499 Other Workloads 153

7. Vandierendonck, H., De Bosschere, K.: Eccentric and fragile benchmarks. In: IS-
PASS 2004: Proceedings of the 2004 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software, pp. 2–11. IEEE Computer Society, Wash-
ington (2004)

8. Joshi, A., Phansalkar, A., Eeckhout, L., John, L.K.: Measuring benchmark similar-
ity using inherent program characteristics. IEEE Transactions on Computers 55(6),
769–782 (2006)

9. Phansalkar, A., Joshi, A., Eeckhout, L., John, L.K.: Measuring program similarity:
Experiments with SPEC CPU benchmark suites. In: ISPASS 2005: IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software, pp. 10–20.
IEEE Computer Society, Washington (2005)

10. Vandierendonck, H., De Bosschere, K.: Experiments with subsetting benchmark
suites. In: WWC-7: IEEE International Workshop on Workload Characterization,
pp. 55–62. IEEE Computer Society, Washington (2004)

11. Bonebakker, L.: Finding representative workloads for computer system design. PhD
thesis, Technische Universiteit Delft (2007) ISBN/EAN 978-90-5638-187-5

12. Sun Microsystems Inc.: Collecting high quality data to characterize strategic work-
loads. Sun Microsystems Inc. Internal (2004)

13. Bonebakker, L.: Quantifying hardware counter sampling error in computer system
workload characterization. Technical report, Sun Microsystems Laboratories (2007)

14. Sun Microsystems, Inc.: UltraSPARC III Cu Users Manual. Sun Microsystems, Inc.
1.0 edn. (2002)

15. Raatikainen, K.E.E.: Cluster analysis and workload classication. SIGMETRICS
Performance Evaluation Review 20(4), 24–30 (1993)

16. Eeckhout, L., Sundareswara, R., Yi, J.J., Lilja, D., Schrater, P.: Accurate statistical
approaches for generating representative workload compositions. In: Proceedings of
the IEEE International Workload Characterization Symposium, pp. 56–66. IEEE
Computer Society, Washington (2005)

17. Jolliffe, I.: Principal Component Analysis. Springer Series in Statistics. Springer,
New York (2002)

18. Hyvärinen, A., Oja, E.: Independent component analysis: Algorithms and applica-
tions. Neural Networks 13(4-5), 411–430 (2000)

19. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis, 1st edn.
Adaptive and learning systems for signal processing, communications and control.
Wiley Interscience, John Wiley & Sons, Inc, New York (2001)

20. Hyvärinen, A.: FastICA (2006),
http://cran.r-project.org/src/contrib/Descriptions/fastICA.html

21. R Development Core Team: R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria (2006) ISBN
3-900051-07-0

22. Sheskin, D.: Handbook of parametric and nonparametric statistical procedures,
3rd edn. Chapman & Hall/CRC, Boca Raton (2004)

http://cran.r-project.org/src/contrib/Descriptions/fastICA.html

Tuning Topology Generators Using

Spectral Distributions

Hamed Haddadi1, Damien Fay2, Steve Uhlig3, Andrew Moore2,
Richard Mortier4, Almerima Jamakovic3, and Miguel Rio1

1 University College London
2 University of Cambridge

3 Delft University of Technology
4 Vipadia Ltd

Abstract. An increasing number of synthetic topology generators are
available, each claiming to produce representative Internet topologies.
Every generator has its own parameters, allowing the user to generate
topologies with different characteristics. However, there exist no clear
guidelines on tuning the value of these parameters in order to obtain a
topology with specific characteristics.

In this paper we optimize the parameters of several topology genera-
tors to match a given Internet topology. The optimization is performed
either with respect to the link density, or to the spectrum of the normal-
ized Laplacian matrix. Contrary to approaches in the literature that rely
only on the largest eigenvalues, we take into account the set of all eigen-
values. However, we show that on their own the eigenvalues cannot be
used to construct a metric for optimizing parameters. Instead we present
a weighted spectral method which simultaneously takes into account all
the properties of the graph.

Keywords: Internet Topology, Graph Spectrum.

1 Introduction

Today’s Internet is formed from more than 25,000 Autonomous Systems (ASes),
each of which can contain tens or hundreds of routers. Constant evolution and
change in the Internet, due to failures and bugs in the short term, and growth
and death of networks in the long term, has made it difficult for scientists to
produce representative Internet topologies at either AS or router level. However,
such maps are essential for the simulation and analysis of ideas including new
and improved routing protocols, and peer-to-peer, media-streaming applications.
Since obtaining accurate, timely maps of the Internet topology is difficult, and
development of new protocols and systems requires understanding their perfor-
mance over a range of scenarios, researchers use synthetic topology generators.

There are many such generators, each of which is parameterized, often with
multiple parameters, giving rise to a plethora of potential synthetic graphs.
Understanding and generating those graphs, useful because they accurately

S. Kounev, I. Gorton, and K. Sachs (Eds.): SIPEW 2008, LNCS 5119, pp. 154–173, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Tuning Topology Generators Using Spectral Distributions 155

represent features of the true underlying Internet graph, is difficult. Existing
approaches to tuning the generator parameters range from selection of partic-
ular metrics of interest, e.g., link count, and tuning to match that particular
metric, to simply using the default parameters encoded in the particular release
of the generator package in use!

The core problem is to select an appropriate cost function which reflects those
aspects of the graph that are important to the user and weights those aspects
accordingly. Such a selection process is inherently subjective: there is no “best”
cost function in general. Once a suitable cost function is selected, it is a simple
matter to tune the available parameters of the topology generator to produce
output that optimally matches said cost function.

In the light of this, our contributions in this paper are as follows:

– We propose a new cost function, the weighted spectrum, constructed from
the eigenvalues of the normalized Laplacian matrix, or graph spectrum;

– We demonstrate that the graph spectrum alone is unsatisfactory as a cost
function;

– We provide an efficient approximation of the weighted spectrum;
– We use this approximation to tune parameters for a set of Internet topol-

ogy generators, enabling us to use these generators to effectively match a
particular measured Internet topology.

The graph spectrum is a useful starting point for such a cost function as it
yields a set of invariants about a graph that encode all the properties of that
graph [8]. Our proposed cost function improves on the simple graph spectrum
because it incorporates the knowledge that not all eigenvalues are equally impor-
tant, and weights toward those that are considered to encode more significant
aspects of the graph’s structure. The basis of our algorithm is to provide a way to
measure the difference between two graphs with respect to a common reference,
a suitable regular graph.1

After reviewing related work in Section 2, we outline background theory in
Section 3 before introducing the topology generators we use in Section 4. In
Section 5 we present the results of our analysis and in Section 6 we com-
pare topologies generated at optimal values of the parameters with an observed
dataset. Finally, we conclude the paper in Section 7 and discuss future work.

2 Related Work

Zegura et al. [27] analyze topologies of 100 nodes generated using pure random,
Waxman [25], exponential and several locality based models of topology such as
Transit-Stub [6]. They use metrics such as average node degree, network diam-
eter, and number of paths between nodes, and use the number of edges as the
metric of choice for optimization of the tuning parameter. However as we show
in this paper, the number of links is not an ideal choice particularly in random

1 A regular graph is one where all nodes have the same degree.

156 H. Haddadi et al.

networks, due to the network structure only resembling the observed Internet
topology at link counts much higher than those suggested by the optimization
process.

Tangmunarunkit et al. [23] provide a first point of comparison of the under-
lying characteristics of degree-based models against structural models. A major
conclusion is that the degree-based model in its simplest form performs better
than random or structural models at representing all the studied parameters.
They compare three categories of model generators: the Waxman model of ran-
dom graphs, the TIERS [10] and Transit-Stub structural models, and the sim-
plest degree based generator, called the Power-Law Random Graph [1]. They
compare under three metrics: expansion, resilience and distortion and conclude
that the hierarchy present in the measured networks is stricter than in degree-
based generators. However, they leave many questions unanswered about the
accuracy of degree-based generators and their choice of metrics and parameter
values.

Heckmann et al. [15] discuss different types of topologies and present a collec-
tion of real-world topologies that can be used for simulation. They then define
several similarity metrics, such as the shortest path distributions, node degree
distributions and node rank exponents, to compare artificially generated topolo-
gies with real world topologies from AT&T’s network. They use these to de-
termine the input parameter range of the topology generators of BRITE [19],
TIERS and GT-ITM [6] to create realistic topologies.

Gkantsidis et al. [13] perform a comparison of clustering coefficients using
the eigenvectors of the k largest eigenvalues of the adjacency matrices of BGP
topology graphs. However, the choice of k is somewhat arbitrary, and further,
the selected eigenvectors are all given equal importance. They consider the rest
of the spectrum as noise, although it has been shown that the eigenvalues of
either the adjacency matrix or the normalized Laplacian matrix can be used to
accurately represent a topology and some specific eigenvalues provide a measure
of properties such as robustness of a network to failures [5,16].

Vukadinovic et al. [24] used the normalized Laplacian spectrum for analysis
of AS graphs. They propose that the normalized Laplacian spectrum can be
used as a fingerprint for Internet-like graphs. Using the Inet [26] generator and
AS graphs from BGP data, they obtain eigenvalues of the normalized Laplacian
matrix. The differences between synthetic and observed topologies indicate that
the structural properties of the Internet should be included in an Internet AS
model alongside power law relationships. They believe that the graph spectrum
should be considered an essential metric when comparing graphs. We expand on
this work by demonstrating how an appropriate weighting of the eigenvalues can
be used to reveal structural differences between two topologies.

Use of spectrum for graph comparison is not limited to Internet research.
Hanna [14] uses graph spectra for numerical comparison of architectural space
in large building plans. By defining space as a graph, he shows that the spectra
of two plan types can be used effectively to judge the effects of global vs. local
changes to, and hence the edit distances between, the plans. Hanna believes

Tuning Topology Generators Using Spectral Distributions 157

spectra give a reliable metric for capturing the local relationships and can be
used to guide optimization algorithms for reproducing plans.

3 Graph Spectra

In this section we introduce a brief overview of graph and establish the techniques
used later in the paper. Here we define the spectrum, the associated normalized
Laplacian matrix, and several relevant facts relating to this matrix. Given an
undirected graph G = (V, E), V is the set of vertices (nodes), E is the set of
edges (links) and dv is the degree of node v.

Definition 1. For a connected graph the normalized Laplacian of the graph G
is the matrix L(G) defined as:

L(G)(u, v) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

1, if u = v and dv �= 0

− 1√
dudv

, if u and v are adjacent

0, otherwise

(1)

The associated spectrum is the set of ordered eigenvalues of L denoted by
λ1, λ2, . . . , λN−1 where N is the number of vertices and the eigenvalues are or-
dered such that 0 ≤ λ1 ≤ · · · ≤ λi ≤ λi+1 ≤ · · · ≤ λN−1 ≤ 2. The normalized
Laplacian has some very interesting properties, the relevant ones of which we
list here:

1. For a connected graph the spectrum is symmetrical around 1 i.e., λi =
λN−i−1;

2. If D is the diameter of the graph (the maximum number of steps between
all pairs of nodes) and vol(G) denotes the volume of G which is the sum of
the node degrees dv:

λ1 ≥ 1
Dvol(G)

=
1

D
∑

v

(dv)
(2)

Thus, the first eigenvalue is bounded by the node degrees of the vertices.
3. For a connected graph

2hG ≥ λ1 ≥
h2

g

2
(3)

where hG is the Cheeger constant and is a measure of the minimum cut-
set of a graph, see e.g. [8] for a full explanation. The Cheeger constant is
closely related to flow problems in graphs and is thus of obvious importance
to network designers.

For these and other reasons, e.g. as presented in [8,5,24,13], the spectrum of
a graph is often called the footprint of a graph. More specifically, in this paper
we evaluate the use of the spectrum as a measure of the deviation of a graph,

158 H. Haddadi et al.

explained below. A random graph is defined as one for which all but o(N) vertices
almost certainly have degree [7]:

dv =
N

2
+ o(N) (4)

where o(N) denotes of the order of N . For random graphs there exists a large
set of properties which form an equivalence class of properties such that if one of
the properties is proven then all are proven, see e.g. [7] for an initial list. There
also exist non-random graphs which satisfy the equivalence class of properties.
These are known as quasi-random graphs. One of the most tractable properties
of the equivalence class of properties is the 4-cycle. A 4-cycle is a route starting
and ending at one vertex which passes through 4 points in total, where these
may be repeated points:

NG(C4) ≤ (1 + o(1))(
N

2
)4 (5)

where C4 denotes a 4 cycle and NG(C4) denotes the number of such cycles.
However, in this paper our interest does not lie in random graphs (those exam-
ined here are not random but structured) but in a measure called the deviation
of a graph, dev(G), which is a measure of a graph’s deviation from pseudo-
randomness. For a regular graph, in which each vertex has the same degree, this
is defined as the number of 4-cycles. However, this can also be related to the
spectrum: in a given graph G with N eigenvalues λ1, . . . , λN , the deviation is
calculated as follows. For a regular graph:

dev(G) =
∑

i

(1 − λi)4 (6)

and for a general graph:

dev(G) =
∑

i

(1 − λi)4 + 20
√

Irr(G) (7)

where Irr(G) is the irregularity of the graph [8]. The deviation of a graph may
be used as a measure of the structure in a graph, i.e., its distance away from
randomness. It is the first term on the right hand side of the bound above which
forms the metric proposed in this paper. This term expresses the appropriate
weighting, i.e., a power of 4, of the eigenvalues that sum to form the bound on
the deviation of a graph.

Next we consider the interpretation of the eigenvalues of the normalized Lapla-
cian matrix. In the following only eigenvalues less than or equal to 1 are consid-
ered, as the spectrum is symmetrical for connected graphs. Spectral clustering
is a technique which uses the eigenvalues of the normalised Laplacian matrix to
perform clustering of a dataset [20]. The first (smallest) eigenvalue and associated
eigenvector are associated with the main clusters of data. Subsequent eigenvalues
and eigenvectors can be associated with cluster splitting and also identification

Tuning Topology Generators Using Spectral Distributions 159

of smaller clusters [22]. Typically, there exists what is called a spectral gap in
which for some k, λk << λk+1 ≈ 1. That is, eigenvalues λk+1, . . . , λN are ap-
proximately equal to one and are likely to represent noise in the original dataset.
It is then typical to reduce the dimensionality of the data using an approxima-
tion based on the spectral decomposition. It is interesting to note that while the
normalized Laplacian has well behaved convergence properties with regards to
clustering, this is not true for other matrices derived from the adjacency ma-
trix [17]. However, with regards to topological graphs, while the first eigenvalue
may be associated, as above, with the optimal cut, which can be considered the
optimal cluster, interpretation of subsequent eigenvalues cannot be associated
with specific graph properties other than the distribution of cluster information
within a graph.

Having established the background material necessary for our method we now
examine the construction of a metric for graph comparison. Given two graphs,
G1 and G2 say we wish to determine at what points their structure vary. As
a first attempt one might try to construct a metric based on the differences
between the eigenvalues as:

C =
∑

i

λi,G1 − λi,G2 (8)

However, pairwise comparison of the eigenvalues as above leads to comparing
eigenvalues which represent different structures in the graph, i.e., it is more
appropriate to compare eigenvalues of similar size. In order to achieve this, the
distribution of eigenvalues is used to construct our metric as:

C =
∫

i

(1 − i)4(P (λi,G1 = i) − P (λi,G2 = i))di (9)

In this paper the distribution of eigenvalues P (λi = i) is estimated by using
pivoting and Sylvester’s Law of Inertia to compute the number of eigenvalues
that fall in a given interval.

While the primary motivation for using a power of four in the equation above is
the number of 4-cycles, and thus the deviation from random behaviour of a graph
as discussed above, an interesting link can also be made with the well known
clustering coefficient, as will now be shown. First however, some background
must be established. Consider the adjacency matrix for a graph, A, in which:

Ai,j = 1 if i → j

where Ai,j is the ith and jth entry of A. The number of paths of length 2 between
nodes i and j, t, can easily be found by squaring the adjacency matrix as:

A2
i,j = t if i → k → j

for some intermediate node(s) k. In general the t paths of length N between
nodes i and j can be found by taking the Nth power of A as:

AN
i,j = t if i → j via N steps.

160 H. Haddadi et al.

noting that for a cycle a path must start and finish at the same point gives:

AN
i,i = t if i → i via an N cycle.

Now consider the spectral decomposition of the matrix A:

A =
∑

i

γiεiεi
T (10)

where γi and εi are the ith eigenpair of A. These form an orthonormal basis for
A (i.e. ortogonal εiε

T
j = 0 and normal εiε

T
i = 1), and so:

AN =

(

∑

i

γiεiε
T
i

)N

(11)

Here we are interested in the number of N -cycles which is the trace of AN :

tr(AN) =
∑

i

γN
i (12)

Thus, for an adjacency matrix the number of N -cycles in the graphs is the sum
of the eigenvalues. Next consider the normalised Laplacian which can be related
to the adjacency matrix as:

L(G) = I − D−1/2AD−1/2 (13)

where D is a diagonal matrix whose ith entry is the degree of node i. Taking
the identity matrix to the left and taking the trace gives:

tr(I − L(G)) = tr(D−1/2AD−1/2) (14)

However, tr(I − L(G)) is also related to the eigenvalues of L(G) as:

tr(I − L(G)) =
∑

i

1 − λi (15)

Putting the two results together and taking a power of N results in:

tr((I − L(G))N) = tr((D−1/2AD−1/2)N) =
∑

i

(1 − λi)N (16)

The right hand side of this equation is the weighted spectrum but it is the
terms on the left hand side we will now examine. Noting that the i,jth entry of
D−1/2AD−1/2 is:

(D−1/2AD−1/2))i,j =
Ai,j√
di

√

dj

(17)

then an N -path passing through a set of nodes, S say, will consist of a product
of #S such terms:

∏

S

Ai,j√
di

√

dj

(18)

Tuning Topology Generators Using Spectral Distributions 161

If node i has K N -cycles, consisting of the sets S1,...,K then the ith diagonal
element of (I − L(G))N is:

(D−1/2AD−1/2))N
i,i =

K
∑

k=1

∏

i,j∈Sk

1
dj

(19)

Next we consider the clustering coefficient of a graph, G. The cluster coef-
ficient, γ(G), is defined as the average number of 3-cycles divided by the total
number of possible 3-cycles:

γ(G) = 1/N
∑

i

Ti

di(di − 1)/2
, di ≥ 2 (20)

where Ti is the number of 3-cycles for node i, di is the degree of node i. Now
consider a specific 3-cycle between nodes a, b and c. For the cluster coefficient
the contribution to the average is (noting that the 3-cycle will be considered
three times, once from each node):

1
da(da − 1)/2

+
1

db(db − 1)/2
+

1
dc(dc − 1)/2

(21)

However, for the weighted spectrum and taking the number of 3-cycles (Note:
4-cycles are the main focus of this research for reasons explained above), this
particular 3-cycle makes the following contribution to the overall sum (i.e. using
K=1, Sk = a, b, c for node a then likewise for nodes b and c):

3
dadbdc

(22)

So it can be seen that the clustering coefficient normalises each 3-cycle according
to the total number of possible 3-cycles while the 3-cycle weighted spectrum
instead normalises using a product of the degrees. Thus the two metrics can
be considered to be similar but not equal. Note also that in contrast to the
clustering coefficient (one number) the weighted spectrum results in many terms
which represent sucessively finer and finer clusters.

4 Available Topologies

4.1 Synthetic Topologies

There are many models available that claim to describe the Internet AS topology.
Several of these are embodied in tools built by the community for generating
simulated topologies. In this section we describe the particular models whose
output we compare in this paper. The first are produced from the Waxman
model [25], derived from the Erdös-Rényi random graphs [11], where the prob-
ability of two nodes being connected is proportional to the Euclidean distance
between them. The second come from the Barabasi and Albert (BA) [3] model,

162 H. Haddadi et al.

following measurements of various power laws in degree distributions and rank
exponents by Faloutsos et al. [12]. These incorporate common beliefs about pref-
erential attachment and incremental growth. The third are from the Generalized
Linear Preference model [4] which additionally model clustering coefficients. Fi-
nally, Inet [26] and PFP [28] focus on alternative characteristics of AS topology:
the existence of a meshed core, and the phenomenon of preferential attachment
respectively. Each model focuses only on particular metrics and parameters, and
has only been compared with selected AS topology observations.

4.2 Waxman

The Waxman model of random graphs is based on a probability model for in-
terconnecting nodes of the topology given by:

P (u, v) = αe−d/(βL) (23)

where 0 < α, β ≤ 1, d is the Euclidean distance between two nodes u and v, and
L is the network diameter, i.e., the largest distance between two nodes. Note
that d and L are not parameters for the Waxman model. The Internet is known
not to be a random network but we include the Waxman model as a baseline for
comparison purposes.

4.3 BA

The BA [2] model was inspired by the idea of preferentially attaching new nodes
to existing well-connected nodes, leading to the incremental growth of nodes and
the links between them. Starting with a network of m0 isolated nodes, m ≤ m0
new links are added with probability p. One end of each link is attached to a
random node, while the other end is attached to a node selected by preferring
the more popular, i.e., well-connected, nodes with probability

Π(ki) =
ki + 1

∑

j kj + 1
(24)

where kj is the degree of node j, with probability q, m links are rewired and new
nodes are added with probability 1−p− q. A new node m has m new links that,
with probability Π(ki), are connected to nodes i already present in the system.
We use the BRITE [19] implementation of this model in this paper.

4.4 GLP

Our third model is the Generalized Linear Preference model (GLP) [4]. It fo-
cuses on matching characteristic path length and clustering coefficients. It uses
a probabilistic method for adding nodes and links recursively while preserving
selected power law properties. In the GLP model, when starting with m0 links,
the probability of adding new links is defined as p where p ∈ [0, 1]. Let Π(di) be

Tuning Topology Generators Using Spectral Distributions 163

the probability of choosing node i. For each end of each link, node i is chosen
with probability Π(di) defined as:

Π(di) = (di − β)/
∑

j

(dj − β) (25)

where β ∈ (−∞, 1) is a tunable parameter indicating the preference of nodes to
connect to existing popular nodes. We use the BRITE implementation of this
model in this paper.

4.5 Inet

Inet [26] produces random networks using a preferential linear weight for the
connection probability of nodes after modeling the core of the generated topology
as a full mesh network. Inet sets the minimum number of nodes at 3037, the
number of ASes on the Internet at the time of Inet’s development. By default,
the fraction of degree 1 nodes α is set to 0.3, based on measurements from
Routeviews2 and NLANR3 BGP table data in 2002.

4.6 PFP

In the Positive Feedback Preference (PFP) model [28], the AS topology of the
Internet is considered to grow by interactive probabilistic addition of new nodes
and links. It uses a nonlinear preferential attachment probability when choos-
ing older nodes for the interactive growth of the network, inserting edges be-
tween existing and newly added nodes. As the PFP generator does not have
any user-tunable parameters we include it only in the last part of Section 5 for
completeness.

4.7 Observed Topology

Our observed topology dataset comes from the CAIDA Skitter project.4 CAIDA
computes the adjacency matrix of the AS topology from the daily Skitter mea-
surements. These are obtained by running traceroutes over a large range of
IP addresses and mapping the prefixes to AS numbers using RouteViews BGP
data. Since the Skitter data represents paths that have actually been traversed
by packets to their destinations, rather than paths calculated and propagated
by BGP system, it is more likely to faithfully represent the IP topology than
the BGP data alone. For our study, we used the graphs for March 2004 as used
by Mahadevan et al. [18]. This dataset reports 9,204 unique ASes across the
Internet.

2 http://www.routeviews.org/
3 http://www.nlanr.net/
4 http://www.caida.org/tools/measurement/Skitter/

http://www.routeviews.org/
http://www.nlanr.net/
http://www.caida.org/tools/measurement/Skitter/

164 H. Haddadi et al.

5 Results

The aim of this section is to examine how well the topology generators match the
Skitter topology for different values of their parameters. To facilitate this com-
parison, grids are constructed over the possible values of the parameter spaces
and various cost functions are evaluated as follows:

1. A cost function measuring the matching between the number of links in
skitter and the generated topologies:

C1(θ) = (lt(θ) − lskitter)2 (26)

where C1 is the first cost function, θ are the model parameters (which differ
for each topology generator), lt is the number of links (which is a function
of the parameters) and lskitter is the number of links in the Skitter dataset.

2. A cost function measuring the matching between the spectra of the Skitter
network and of the generated topologies:

C2(θ) =
∑

i

(P (Λ ≤ λt,i) − P (Λ ≤ λskitter,i))2 (27)

where λt,i is the ith eigenvalue for topology t.
3. A cost function measuring the matching of the weighted spectra:

C3(θ) =
∑

i

((w ∗ P (Λ = λt,i) − w ∗ P (Λ = λskitter,i))2 (28)

where weight w = (1 − i)4.

In addition to examining different parameter values across a grid, the opti-
mum parameters with respect to C3(θ) are estimated using the Nelder Meade
simplex search algorithm [21,9]. Note that the topologies generated by the topol-
ogy generators are random in a statistical sense, due to differing random seeds
for each run. Ten topologies are generated for each value of θ and the average
spectral distribution is calculated. We found that the variance of the spectral
distributions was sufficiently low to allow reasonable estimates of the minima in
each case.

5.1 Link Densities

Figure 1 displays the value of the cost function C1(θ) as a function of the topology
generator parameters. On the upper and lower left graphs, the grayscale color
indicates the value of the cost function. For Inet (lower right) there is only one
parameter, p, so it is plotted as a curve in Figure 1(d). Figure 1 shows that
a minimum exists for each topology in approximately the same regions as the
default values of each generator.5 For the BA generator it is known that for
5 Some of these default values are listed in table 1.

Tuning Topology Generators Using Spectral Distributions 165

α

β

0.02 0.04 0.06 0.08 0.1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Waxman

p

q

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Exponential

Scale Free

(b) BA

p

β

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) GLP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

9
x 10

7

p

lin
k

co
st

 fu
nc

tio
n.

(d) Inet

Fig. 1. Topology generator parameter grid for sum squared error from number of links

values of p and q above the line shown in Figure 1(b), the topologies generated
follow an exponential node degree distribution while those below follow a scale-
free distribution. It is encouraging to note that the values of C1(θ) are large in
the exponential region and the minimum is in the scale-free region as the node
degree distribution of the Internet is known to be approximately scale free [2].
Overall the results obtained by tuning the parameters based on C1(θ) appear
reasonable. For link density matching it is possible to obtain parameter values
which match the link densities exactly. Indeed, there is a ridge of parameters for
BA, GLP and Waxman for which the link densities can be matched. However,
as noted in the introduction, there is no control over any other characteristic of
the graph using this method.

5.2 Spectra PDF

Figure 2 shows the spectral PDF of the Skitter dataset and the four topology
generators calculated at three parameters values in each grid (the parameter
values are indicated in brackets in the legends). The aim is to illustrate how
much the spectral PDFs change with the values of the parameters. The spectral
PDFs of Waxman (Figure 2(a)) vary significantly for different values of α and β.
Furthermore, none of the Waxman PDFs match well the spectral PDF of the

166 H. Haddadi et al.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
P

(Λ
 =

 λ
)

λ

Waxman(0.04,0.03)

Waxman(0.05,0.05)

Waxman(0.08,0.08)

Skitter

(a) Waxman

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

λ

P
(Λ

 =
 λ

)

BA2(0.70,0.05)
BA2(0.35,0.35)
BA2(0.05,0.70)
Skitter

(b) BA

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
(Λ

 =
 λ

)

λ

GLP(0.70,−0.04)
GLP(0.40,−0.10)
GLP(0.10,0.20)
Skitter

(c) GLP

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
(Λ

=
λ)

λ

INET(0.05)
INET(0.50)
INET(0.85)
Skitter

(d) Inet

Fig. 2. PDF of Spectra

Skitter graph. The BA PDFs vary to a lesser extent (Figure 2(b)) and appear to
give a much better match than the Waxman model, especially around eigenvalue
1 (λ = 1). This better match of BA is not surprising as the Waxman model is not
a good model for the Internet as noted in Section 4. GLP (Figure 2(c)) and Inet
(Figure 2(d)) give similar results to BA, with a poor match outside eigenvalue 1.
The better match of the BA model around eigenvalue 1 is interesting. As noted
in Section 3 the regions away from eigenvalue 1 are far more important than the
region around λ = 1. However, what is required is a technique that reveals the
differences with distance from one as these are more important. Thus it would
appear difficult to evaluate which model, or even which parameter, is better
based on the PDFs alone. This point is now further explored by analysis of the
grids calculated with respect to C2(θ).

5.3 Limitations of Spectra CDF

Figure 3 shows the value of the second cost function C2(θ) as a function of
the topology generator parameters, in the same way as Figure 1. As can be seen

Tuning Topology Generators Using Spectral Distributions 167

α

β

0.02 0.04 0.06 0.08 0.1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Waxman

p

q

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) BA

p

β

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) GLP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8
x 10

−6

p

C
D

F
 c

os
t f

un
ct

io
n

(d) Inet

Fig. 3. Parameter grid for sum of absolute differences of spectra CDFs

in Figure 3, there are many islands corresponding to local minima, creating a
rugged landscape. The variance in the PDFs referred to in this section is actually
greater than any gradient that might exist in the grid. This means that it is not
possible to estimate the minimum with respect to C2(θ). Figure 3 shows that the
spectrum on its own is not sufficient to identify the optimum parameters of any
of the topology generators. This is because each eigenvalue in C2(θ) is weighted
equally. As noted in Section 3, the eigenvalues close to 1 are more likely to be
affected by the random seeds for each topology generator and are the source of
the noise on the grid.

5.4 Weighted Spectra

The previous section illustrated the limitations of using the raw eigenvalues
to find optimal topology generator parameters to match the Skitter topology.
Figure 4 shows a plot of the weighted spectra of the same topologies as those
shown on Figure 2. As can be seen the results are quite different from those shown
in Figure 2. The Waxman weighted spectra still shows a bad fit with respect
to the Skitter data (mainly around 0 and 2) compared to the other generators.

168 H. Haddadi et al.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.005

0.01

0.015

0.02

0.025

0.03

λ

(1
−λ

)4

Waxman(0.04,0.03)
Waxman(0.05,0.05)
Waxman(0.08,0.08)
Skitter

(a) Waxman

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

λ

(1
−λ

)4

BA2(0.70,0.05)
BA2(0.35,0.35)
BA2(0.05,0.70)
Skitter

(b) BA

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

λ

(1
−λ

)4

GLP(0.70,−0.04)
GLP(0.40,−0.10)
GLP(0.10,0.20)
Skitter

(c) GLP

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.002

0.004

0.006

0.008

0.01

0.012

λ

(1
−λ

)4
INET(0.05)
INET(0.50)
INET(0.85)
Skitter

(d) Inet

Fig. 4. Weighted spectra grid for generator parameters

The other generators (BA, GLP and Inet) now show that they are capable of
matching the weighted spectra of the Skitter topology, especially around the
point of greatest weight (λ = 0.4 or 1.6). The difference between the weighted
spectra around 1 is no longer of importance (in contrast to Figure 2), reflect-
ing that the weights here approach zero as we approach eigenvalue 1. In the
next section the optimum values and the resulting weighted spectra will be
compared.

5.5 Weighted Spectra Comparison

Figure 5 shows the grids associated with C3(θ). As can be seen the grids show
that there is a region with a minima in each case and in addition, comparing
Figure 5 and Figure 1 it can be seen that these minima lie in a region close to
those for C1(θ). However, it should be noted that the weighted spectra will try
to fit more than just the number of links in a topology. This demonstrates the
inherent trade-off. Also of note is that the region of interest for the BA model
lies inside the region of scale-free behaviour as shown in Figure 5(b).

Tuning Topology Generators Using Spectral Distributions 169

α

β

0.02 0.04 0.06 0.08 0.1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Waxman

p

q

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Exponential

Scale Free

(b) BA

p

β

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) GLP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.25

0.3

0.35

0.4

0.45

0.5

p

D
is

cr
ep

an
cy

 d
is

ta
nc

e

(d) Inet

Fig. 5. Grid of sum squared error of weighted spectra for topology generators

6 Generating Topologies with Optimum Value
Parameters

Table 1 displays the optimum values for the topology generators for generating
networks that are close to the Skitter graph. In addition, we give the values for
C3(θ), which show that PFP gives the closest fit followed by BA, GLP, Waxman
and finally Inet. While these results are mostly expected, the ranking of Inet
as the worst topology generator is surprising. We have also listed some of the
default parameters used in certain generators such as BRITE [19]. While many
of the optimised parameters are close to the default values, which is encouraging,

Table 1. Optimum parameter values for matching Skitter topology

Waxman α = 0.08 (default= 0.15) β = 0.08 (default= −0.2) C3(θ) = 0.0026 C3(θ) = 0.0797
BA p = 0.2865 (default= 0.6) q = 0.3145 (default= 0.3) C3(θ) = 0.0014 C3(θ) = 0.0300
GLP p = 0.5972 (default= 0.45) β = 0.1004 (default= 0.64) C3(θ) = 0.0021 C3(θ) = 0.0446
Inet α = 0.1013 (default= 0.3) − C3(θ) = 0.0064 C3(θ) = 0.0150
PFP − − C3(θ) = 0.0014 C3(θ) = 0.0371

170 H. Haddadi et al.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
P

(Λ
 =

 λ
)

λ

Skitter
Waxman
GLP
BA2
INET
PFP

(a) Weighted spectra

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

P
(Λ

 =
 λ

)

λ

Skitter
Waxman
GLP
BA2
INET
PFP

(b) Normalized weighted spectra

Fig. 6. Comparison of the weighted spectra

it should be noted that the default parameters are for a typical graph and are not
selected for any particular situation. Thus a direct comparison is meaningless.

Figure 6(a) shows the weighted spectra for each of the topology generators
and inspection of this figure goes some way to explaining the discrepancy in the
results. As can be seen the main peak in the weighted spectra for the Skitter
data occurs at a value of λ = 0.4. The Waxman generator peak occurs at λ =
0.6 which is closer to 1 demonstrating the greater amount of random structure

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

 P
(X

<
x)

Node degree

Waxman
BA

GLP
Inet
PFP

Skitter

(a) Node degree distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1

 P
(X

<
x)

Average Neighbor degree rank

Waxman
BA

GLP
Inet
PFP

Skitter

(b) Average neighbor connectivity

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 10 100 1000

C
lu

st
er

in
g

C
oe

ff
ic

ie
nt

s

Node degree

Waxman
BA

GLP
Inet
PFP

Skitter

(c) Clustering coefficients

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1

R
ic

h-
cl

ub
 c

oe
ff

ic
ie

nt
s

Normalized rank r/N

Waxman
BA

GLP
Inet
PFP

Chinese

(d) Rich-Club connectivity

Fig. 7. Comparison of topology generators and Skitter topology

Tuning Topology Generators Using Spectral Distributions 171

in the Waxman topologies. However, for the Inet generator the peak occurs at
the correct point (λ =0.4) but the weighted power at this point is far greater
than in the skitter topology. By normalizing the weighted spectrum this point
becomes clear:

C3(θ) =
∑

i

((wi ∗ P (Λ = λt,i))
∑

i

((wi ∗ P (Λ = λt,i))
− ((wi ∗ P (Λ = λskitter))

∑

i

((wi ∗ P (Λ = λskitter))
(29)

Using the normalised weighted spectrum the results in Figure 6(b) show that
Inet is the best match for the Skitter data while the Waxman model still performs
worse than the other models. Further research is required before stating which
version of C3 is superior.

Figure 7 shows a comparison of the optimized topologies with respect to
four typical network metrics: the node degree distribution, the average neighbor
connectivity, the clustering coefficient and the rich-club connectivity [28]. As
can be seen PFP gives the best match for these metrics in agreement with our
proposed metric C3(θ). The performance of the other topologies is mixed showing
that while one topology is able to match one metric it fails to match another. For
example, the GLP generator achieves a reasonable match for the node degree
distribution but fails to match the average neighbor connectivity. It is interesting
to note that BA does not match the rich club connectivity which is not evident
in our metric.

7 Conclusions

Comparison of graph structures is a frequently encountered problem across a
number of problem domains. To perform a useful comparison requires definition
of a cost function that encodes which features of the graphs are considered im-
portant. Although the spectrum of a graph is often claimed to be a way to encode
a graph’s features, the raw spectrum contains too much noise to be useful on its
own. In this paper we have introduced a new cost function, the weighted graph
spectrum, that improves on the graph spectrum by discounting those eigenvalues
that are believed to be unimportant and emphasising the contribution of those
believed to be important.

We use this cost function to optimise the selection of parameter values within
the particular problem domain of Internet topology generation. The weighted
spectrum was shown to be a useful cost function in that it leads to parame-
ter choices that appear sensible given prior knowledge of the problem domain,
i.e., are close to the default values and, in the case of the BA generator, fall
within the expected region. In addition, as the metric is formed from a sum-
mation, it is possible to go further and identify which particular eigenvalues are
responsible for significant differences. Although it is currently difficult to assign
specific features to specific eigenvalues, it is hoped that this feature of our cost
function will be useful in the future.

172 H. Haddadi et al.

Acknowledgments

We would like to thank Andrew Thomason of Cambridge University for advice
on comparison techniques and insight on use of graph deviation. We greatly
acknowledge encouragement and advice of Richard Gibbens for pursuing this
research. We also appreciate the comments and constructive feedback by anony-
mous reviewers. This work is conducted as part of the EPSRC UKLIGHT/
MASTS project under grants GR/T10503/01 and GR/T10510/03.

References

1. Aiello, W., Chung, F., Lu, L.: A random graph model for massive graphs. In: STOC
2000: Proceedings of the 32nd Annual ACM Symposium on Theory of Computing,
Portland, OR, May 2000, pp. 171–180 (2000)

2. Albert, R., Barabasi, A.-L.: Topology of evolving networks: local events and uni-
versality. Physical Review Letters 85, 5234 (2000)

3. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Sci-
ence 286(5439), 509–512 (1999)

4. Bu, T., Towsley, D.: On distinguishing between Internet power law topology gen-
erators. In: Proceedings of IEEE Infocom 2002, New York, NY (June 2002)

5. Butler, S.: Lecture notes for spectral graph theory. Lectures in Nankai University,
Tianjin, China. (2006)

6. Calvert, K.L., Doar, M.B., Zegura, E.W.: Modeling Internet topology. IEEE Com-
munications Magazine 35(6), 160–163 (1997)

7. Chung, F., Graham, R.: Quasi-random graphs with given degree sequences. Ran-
dom Struct. Algorithms 32(1), 1–19 (2008)

8. Chung, F.R.K.: Spectral Graph Theory. CBMS Regional Conference Series in
Mathematics. American Mathematical Society (1997)

9. Dennis, J., Woods, D.: Optimization in microcomputers: The nelder-meade simplex
algorithm. In: Wouk, A. (ed.) New Computing Environments: Microcomputers in
Large-Scale Computing, pp. 116–122. SIAM (1987)

10. Doar, M.B.: A better model for generating test networks. In: IEEE GLOBECOM
1996, London, UK (November 1996)

11. Erdös, P., Rényi, A.: On random graphs. In: Mathematical Institute Hungarian
Academy, 196, London, (1985)

12. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the In-
ternet topology. In: Proceedings of ACM SIGCOMM 1999, Cambridge, Massa-
chusetts, United States, pp. 251–262 (1999)

13. Gkantsidis, C., Mihail, M., Zegura, E.: Spectral analysis of Internet topologies. In:
Proceedings of IEEE Infocom 2003, San Francisco, CA (April 2003)

14. Hanna, S.: Representation and generation of plans using graph spectra. In: 6th
International Space Syntax Symposium, Istanbul (2007)

15. Heckmann, O., Piringer, M., Schmitt, J., Steinmetz, R.: On realistic network
topologies for simulation. In: MoMeTools 2003: Proceedings of the ACM SIG-
COMM workshop on Models, methods and tools for reproducible network research,
New York, NY, USA, pp. 28–32 (2003)

16. Jamakovic, A., Uhlig, S.: On the relationship between the algebraic connectivity
and graph’s robustness to node and link failures. In: Next Generation Internet
Networks, 3rd EuroNGI Conference on, Trondheim, Norway (2007)

Tuning Topology Generators Using Spectral Distributions 173

17. Luxburg, U., Bousquet, O., Belkin, M.: Limits of spectral clustering. In: Advances
in Neural Information Processing Systems. MIT Press, Cambridge (2005)

18. Mahadevan, P., Krioukov, D., Fomenkov, M., Dimitropoulos, X., Claffy, K.C., Vah-
dat, A.: The Internet AS-level topology: three data sources and one definitive met-
ric. SIGCOMM Computer Communication Review 36(1), 17–26 (2006)

19. Medina, A., Lakhina, A., Matta, I., Byers, J.: BRITE: an approach to universal
topology generation. In: IEEE MASCOTS, Cincinnati, OH, USA, August 2001,
pp. 346–353 (2001)

20. Nadler, B., Lafon, S., Coifman, R., Kevrekidis, I.: Diffusion maps, spectral cluster-
ing and eigenfunctions of fokker-planck operators. In: Neural Information Process-
ing Systems (NIPS) (2005)

21. Nelder, J., Mead, R.: A simplex method for function minimization. Comput. J. 7,
308–313 (1965)

22. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. In:
Dietterich, T., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information
Processing Systems 14. MIT Press, Cambridge (2002)

23. Tangmunarunkit, H., Govindan, R., Jamin, S., Shenker, S., Willinger, W.: Net-
work topology generators: degree-based vs. structural. In: Proceedings of ACM
SIGCOMM 2002, Pittsburgh, PA, pp. 147–159 (2002)

24. Vukadinovic, D., Huang, P., Erlebach, T.: On the spectrum and structure of In-
ternet topology graphs. In: Unger, H., Böhme, T., Mikler, A.R. (eds.) IICS 2002.
LNCS, vol. 2346, Springer, Heidelberg (2002)

25. Waxman, B.M.: Routing of multipoint connections. IEEE Journal on Selected Ar-
eas in Communications (JSAC) 6(9), 1617–1622 (1988)

26. Winick, J., Jamin, S.: Inet-3.0: Internet topology generator. Technical Report CSE-
TR-456-02, University of Michigan Technical Report CSE-TR-456-02 (2002)

27. Zegura, E.W., Calvert, K.L., Donahoo, M.J.: A quantitative comparison of graph-
based models for Internet topology. IEEE/ACM Transactions on Networking
(TON) 5(6), 770–783 (1997)

28. Zhou, S.: Characterising and modelling the Internet topology, the rich-club phe-
nomenon and the PFP model. BT Technology Journal 24 (2006)

Performance, Benchmarking and Sizing in

Developing Highly Scalable Enterprise Software

Xiaoqing Cheng

Performance, Data Management & Scalability, SAP AG
xiaoqing.cheng@sap.com

Abstract. Performance and scalability are essential characteristics of
large-scale enterprise software. This paper presents the technologies be-
hind the processes implemented at SAP. During the specification, de-
sign and implementation phases, Performance Design Patterns are used
as guidelines, which also define the Key Performance Indicators (KPI)
for performance and scalability tests. With proven scalability of soft-
ware applications, SAP’s Sizing Process enables the transformation of
business requirements into hardware requirements. It also allows SAP’s
customers to flexibly configure their specific applications, on operating
system (OS), database (DB), and hardware platforms of their choice.
The SAP Standard Application Benchmarks are developed and executed
to test the scalability in extremely high load situations and to verify the
sizing statements from the sizing process. They are also used for SAP
internal regression tests across releases, and by SAP’s hardware part-
ners for platform tests. Besides the response time centric performance
testing, analysis and optimization, SAP follows a KPI-focused approach
which permits potential performance problems to be reliably predicted
already in simple and easy-to-execute tests. The SAP NetWeaver Por-
tal Benchmark is used to demonstrate how to conduct performance and
scalability tests using single user tests and load tests. We will introduce
the KPIs used for Java memory analysis and optimization. Finally, this
paper shows how the results of these tests can be used in hardware sizing
in customer implementation projects.

1 Introduction

SAP’s enterprise software applications support companies of all sizes and in all
industries in executing mission-critical business processes. In these highly inte-
grated software applications, complex business processes are mapped onto the
software systems. In large global companies, tenths of thousands of concurrent
users, distributed over continents and time zones, may work collaboratively in
a system landscape connected by a wide area network (WAN). In all the appli-
cation areas, performance and scalability are the essential characteristics that
ensure the success and return of investment (ROI) of software solutions.

Performance Expectations. Performance can be considered both from a sys-
tem point of view, and a user point of view. While system administrators are

S. Kounev, I. Gorton, and K. Sachs (Eds.): SIPEW 2008, LNCS 5119, pp. 174–190, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Benchmarking and Sizing in Developing Highly Scalable Enterprise Software 175

interested in achieving required system throughput with a limited IT budget,
the end users are seeking reasonable response time when interacting with soft-
ware systems. Acceptable response times are related to the content of business
processing. For example, to save an Internet Sales order (business-to-customer)
with only a few line items, sub second response time is expected, while a business-
to-business order including several thousands of line items needs highly complex
pricing calculations and availability checks, and thus a significant longer response
time will be accepted.

The Importance of Scalability. Scalability refers to the predictable resource
consumption of a software application under different system load, while the
response time remains in the reasonable range. A system load, in a simple case,
can be specified by the average number of user interaction steps per unit of
time (e.g. hits per second). Scalability is a multi-dimensional behavior, related
to varying system load in different categories including data volume, hardware
adaptivity, and geographical distribution of data centers.

Within the life cycle of a software application, which also includes the phases
of operation and maintenance, and retirement, the performance and scalability
aspects need to be considered differently. This paper focuses on efficient and
effective processes for reliable performance assessment and optimization in the
development phase, comprising activities in the areas of performance, bench-
marking and sizing.

2 A KPI-Focused Approach for Performance Testing,
Analysis and Optimization

2.1 Performance Design Patterns

Many performance issues cannot be solved by fixing a simple bug in the soft-
ware code alone. They are caused by inappropriate design decisions made in
the software architecture. Performance design patterns specify target behaviors
and design rules for software components and interfaces while at the same time
allowing a high degree of freedom for the implementation.

A SAP business application generally consists of 3 layers: the persistence layer,
the application layer, and the front end layer. Relational database systems are
typically used in the persistence layer, and the data accesses are executed by
so-called SQL statements [3]. While the persistence layer has to ensure the data
consistency under highly concurrent data accesses, the application layer carries
out CPU intensive processing of business logic. The application layer of a large
software system is typically built up by a load-balanced cluster of application
servers, which scale in CPU and memory and provide high availability at the
same time. The front end layer represents the user interface (UI), typically run-
ning on PCs, connected by a LAN or WAN to the application servers, providing
high usability and productivity to the end users. SAP’s performance design pat-
terns cover these major software layers and their interactions. They prescribe
the following:

176 X. Cheng

Major Database Accesses should be Supported by Appropriate In-
dexes. Indexes of a database table accelerate the data access and ensure a data
read time nearly independent of the length of the database table. Since data
need to be read in many different ways using different keys and selection crite-
ria, many indexes can be necessary to provide the best selectivity. On the other
hand, too many indexes of a database table would slow down the modification
of a database table, because of updates of these indexes. When designing a data-
base table, data reads and updates must be carefully analyzed for major business
processes. Based on the data access patterns identified, appropriate indexes are
designed and used to support major data accesses.

Complete WHERE Clauses of SELECT Statements. The performance
when reading data from a database is impacted by the size of the result set of
a SELECT statement. The intention of this design pattern is to restrict the size
of result sets to the minimum of data which is required for processing.

Using Buffers and Caches at the Application Server Layer. In the appli-
cation layer, data representing intermediate results are accessed very frequently.
Caching or buffering this kind of data on application servers can speed up per-
formance by a factor of 10 to 100. In the design phase, the type and amount
of data for caching and buffering needs to be analyzed very carefully. The most
important considerations are cache key design, scope of sharing, invalidation
mechanism, and read/write ratio. The cache key helps to find the cached en-
tities quickly. Cached data can be shared in different contexts: only within a
user session, by different sessions of a user, or by all users. In most cases, when
the original data are modified, it is not necessary to reload the cache; instead
it is enough to mark the cached copies as invalid. The life time of the cached
data is of particularly high importance. The synchronization overhead of too
frequent updates, both between application servers and against the database,
could eliminate the benefit of caching.

No Identical Accesses to Persistence Layer. For data consistency reasons,
the persistence layer represents a central resource in SAP applications. Data
accesses to this central instance must be reduced to a necessary minimum. During
user interaction steps within a transaction (i.e. between two successive data
commits) the same data needs to be read from the persistence layer only once
and should be cached for reuse. This design pattern represents a simple and
efficient criterion in the data and architecture design and can be easily verified
in testing.

Parallel Processing Enabled. As long as the data consistency is ensured,
business objects should be processed in parallel, to be able to utilize the parallel
processing capabilities of modern hardware. However, under highly concurrent
usage, some processing procedures need to be explicitly protected by critical
sections. These critical sections should be designed as long as is necessary to
guarantee consistency, and as short as possible so as to enable parallel processing.
This requirement also applies to the behavior of the interface for mass data
processing.

Benchmarking and Sizing in Developing Highly Scalable Enterprise Software 177

Linear Dependency. The scalability of a large application can only be achieved
when the resource consumption depends maximally linearly on the number and
size of processed business objects. Otherwise, the resource requirements will ex-
ceed any possible limits quickly, and result in unpredictably increasing response
times. To ensure linear dependency, models of business processing must be ad-
justed and optimized. Later on in this paper, we will present a simple procedure
to test the linear dependency and to locate the software components causing the
non-linearity.

One Network Round Trip per User Interaction Step. A user interaction
step has at least one synchronous communication cycle, which is a network round
trip, between the front end and the application server. It is triggered by a user
action, e.g. clicking a button in the UI screen, and typically results in a new UI
screen. Since network performance is mainly defined by the latency time and
bandwidth, minimal number of network round trips and minimal transferred
data volume will optimize the network time.

Average End-to-End Response Time Below One Second. End-to-end
response time includes the server response time, the network time and front end
rendering time. The user interaction steps to complete a business process could
have different response times, depending on the content of business processing.
Certain average limits are necessary to fulfill usability and end user productivity
requirements.

Sizing Procedure Available. A sizing procedure, or sizing guideline, helps to
determine the hardware resource consumption behavior of a software application
depending on the parameters of the business processes. It is the responsibility
of the development team to provide clear architectural concepts for predictable
resource consumption, and to verify them by testing.

2.2 Key Performance Indicators Reliably Predict Possible
Performance Issues

The traditional response time centric approach of performance testing, analysis
and optimization tries to break down end-to-end response time into times spent
in individual software components, and to identify the causes of the hotspot
times. The optimization activities will then try to reduce or even eliminate the
identified hotspot times. The major advantages of this approach are easy to
understand and most effective in performance related customer support cases.

Although SAP enterprise applications are delivered as standard business ap-
plications, they are customized and modified in nearly every customer installa-
tion, thus adapting them to the individual business processes of SAP customers.
In addition, they can be personalized by each individual end user. Moreover,
these applications support different operating systems, databases and hardware
platforms, so that SAP customers can choose their favorite platforms. Under
these circumstances, it is impossible to construct and run a set of test cases that
weed out all possible performance issues on all possible hardware configurations.

178 X. Cheng

The goal of development testing therefore is to find as many as possible func-
tional and performance issues by executing a limited set of specified test cases.
This is one of the most important motivations to use KPIs over and above the
tried and tested response time, since these KPIs can help to predict possible
issues even when they don’t actually occur in the test cases being measured.

Requirements for KPIs. Firstly, good KPIs should reflect the performance
both from a user and system point of view. Secondly, good KPIs should be
measured accurately. Accuracy supports the optimization process: If a KPI can
be measured with an accuracy of 5%, then this KPI can only verify optimiza-
tions providing more than 5% improvement. Otherwise, it is impossible to know
whether an optimization really improves the performance. Thirdly, only repro-
ducible measurement results can be used for performance evaluation. If the mea-
surement results of a KPI cannot be reproduced, there must be some unknown
factors with significant performance impacts. To identify the unknown factors
is the next step in the performance analysis and optimization process. And last
but not least, good KPIs should give indications for possible optimizations.

The Importance of Defining the Right KPIs. In the KPI-focused ap-
proach, the question which performance characteristics should be defined as
KPIs is much more important than meeting concrete KPI values. Let’s consider
our network KPIs as examples to discuss the importance of good KPIs. Net-
work time has a highly indeterministic behavior, since the network resources
are shared by many unpredictable consumers, and depend highly on the net-
work topology. This means that the measurement results significantly depend
on when and where you measure. In addition, different installations of a soft-
ware application may use different network transport protocols and could have
different quality of services. For this reason, instead of the network time, SAP
uses the number of network round trips and transferred date volume, in the
application layer of a protocol stack, as KPIs for network performance. These
two KPIs can be measured very accurately, and they give clear guidelines to
developers on how to improve network performance: one network round trip per
user interaction step and minimal transferred data volume. When testing in to-
day’s LAN with maximal 10 ms latency time and giga bit per second bandwidth,
network performance issues hardly ever occur. But in a WAN, an intercontinen-
tal network connection could have a latency time higher than 300 ms, and 100
kilo byte per second as a typical bandwidth. Using measured network KPIs,
the real network time can be reliably predicted for different given latency times
and bandwidths. In case of sequential network round trips, as a simple example,
network time = number of network round trips · latency time + data volume

bandwidth .
Derived from the performance design patterns, SAP uses the following KPIs

in performance tests carried out by developers themselves, and for quality check
points and regression tests run by quality teams.

Number of Accesses to the Persistence Layer. In the case of relational
databases, this is the number of executed SQL statements. This number indicates
the performance and scalability impact of data accesses to the persistence layer

Benchmarking and Sizing in Developing Highly Scalable Enterprise Software 179

which typically represents a central system resource in a SAP system. Achieving
this KPI depends on applying the performance design patterns “Using buffers
and caches at application server layer” and “No identical accesses to persistence
layer”.

Data Volume Transferred to and from the Persistence Layer (KB).
All databases provide main memory caches to speed up repetitive data accesses.
Unnecessary high data volume could cause higher eviction rate and reduce the
effectiveness of the database caching. Another aspect covered by this KPI is the
limited bandwidth of data transfer between the persistence and the application
layer. This KPI is related to the performance design pattern “Complete WHERE
clauses of SELECT statements”.

CPU Consumption (msec). CPU time represents central system resources
shared by many concurrent computing processes and users, thus it could easily
become a bottleneck for performance and scalability. In general, CPU time is
close to, but not necessarily equal to the response time, depending on whether a
request is processed sequentially or in parallel, and on the wait time during the
request processing. The CPU time measurement results can be reproduced much
easier than the response time, because they largely depend on the test case and
the CPU speed, whereas the response time is influenced additionally by many
different wait times.

Peak Memory Consumption (MB). Like the CPU, the physical main mem-
ory is another central system resource, but it is more critical than CPU. When
the CPU resource becomes a bottleneck, it will result in increased system re-
sponse time. That means, the requests are waiting longer in some system queues
and their processing will be postponed (CPU bound). However, when the system
resource memory is exhausted, applications cannot continue to run, resulting in
a system crash like the Java out of memory error (memory bound).

In modern programming languages like Java, with automatic memory man-
agement based on Garbage Collection (GC), the memory consumption behavior
cannot be described by a single KPI. The topic of Java memory KPIs and GC
tuning will be discussed in the next section.

Number of Network Round Trips and Data Volume Transferred
Between Front End and Application Layer (KB). These two KPIs for
network performance have already been discussed in detail earlier in this paper.

2.3 Java Memory KPIs and GC Tuning

The Java runtime takes over the responsibility of memory management; the Java
programmer only decides when to create objects, which can be used through ref-
erences, and deletes all references to the object after usage. Once an object has
no more references, it will be automatically detected and removed by the Java
garbage collector. This automatic memory management enhances the productiv-
ity in software development and improves the quality of software code. Memory

180 X. Cheng

Fig. 1. Measurement procedures of Java memory KPIs in a load test

analysis in Java thus is not only a matter about how to provide enough space; it
is complicated by the dynamic aspect of Java garbage collection, which impacts
the Java performance and scalability significantly [5].

In Java, we distinguish between memory utilization and memory consump-
tion. Memory utilization is the allocation of physical memory by a Java Virtual
Machine (JVM). On the one hand it is necessary to make sufficient Java heap and
stack configuration to ensure that available physical memory is really utilized,
on the other hand, Java heap and stack must fit completely into the physical
memory to avoid paging. While the memory utilization is a matter of configu-
ration, memory consumption is the memory requirement or behavior of a Java
application under certain usage, which is independent of the JVM configuration.
For a complete observance of Java memory behavior, we propose the following
three Java memory KPIs:

Framework Space (MB). This is the memory footprint of a JVM after start
up and warm up. This KPI value depends on the number of Java applications
which are deployed, started and used on the JVM, and indicates, for a given JVM
heap configuration, how much memory is still available to run the applications.

User Session Space (MB). This is the amount of memory allocated by a
logged-on, but inactive user, and which cannot be shared by other users. This
corresponds to the static, traditional memory KPI of a user session.

Processing Space (MB per User Interaction Step). This is the dynamic
part of the Java memory consumption, it is defined as the average garbage
colleted memory per user interaction step.

Figure 1 illustrates the measurement procedures of the three Java memory
KPIs, when using a multi-user load test. For high reproducibility of the mea-
surement results, we always consider the heap usage after explicitly triggered
full GCs. The framework space is determined after system warm-up. The user
session space = (M – framework space) / N, and the processing space = total
garbage collected bytes during the execution of K user interaction steps / K.

Benchmarking and Sizing in Developing Highly Scalable Enterprise Software 181

It is important to mention that these three Java memory KPIs are independent
from JVM configuration and system load. They reflect the memory requirement
of a Java application itself. Thus, these KPIs can be used to support the Java
memory optimization.

In principle, each GC cycle runs through three sequential phases: Mark, Sweep
and Compact, which all consume system resources such as CPU time. More
critical is the fact that, despite different parallel and concurrent GC algorithms,
the “stop the world pause” where all the Java application threads are held down
cannot be omitted completely. This can result in poor response time and poor
CPU utilization [6]. Also, because there is no locality of memory access during
GCs, memory paging becomes very dangerous for Java applications. And in
the worst case, so-called Java resonance may occur, where the CPU utilization
oscillates between 0% and 100%. To evaluate the impact of GC, we propose the
following two GC KPIs, which can be calculated as average counters from a
GC log:

– GC Duration, i.e. the average elapsed time required to complete a GC
cycle. This GC KPI represents the negative impact.

– GC Interval, i.e. the average elapsed time between two successive GC oc-
currences.

GC duration should always be considered in relation to GC interval. Assuming
that the average object life time remains constant, the higher the GC interval
is, the more efficient the GC cycle, i.e. able to recycle more garbage and to copy
fewer objects for compaction.

Using these GC KPIs, it is possible to evaluate the efficiency of different Java
heap configurations and the GC algorithms used, when putting the same load
on a system. In a productive installation with given heap configuration and
GC algorithm, the GC KPIs indicate whether the performance impact of GC
activities is acceptable. As rules of thumb, we recommend a minor GC duration
of less than 0.2 seconds and a minor GC interval of more than 1 second, and a
full GC duration of less than 10 seconds and a full GC interval of more than 10
minutes.

In summary, whenever possible, it is best to first try to optimize the Java
memory consumption using the memory KPIs, and then start with GC tuning
via the GC KPIs. The influencing factors and programming guidelines are shown
in the following table.

Table 1. Guidelines for Java memory optimization

The influencing factor Programming Guideline
Volume of temporary objects Reuse objects as long as possible

Life time of intermediate objects Release unneeded objects as early as possible

Volume of long time objects Use well designed and balanced caches in Java

182 X. Cheng

2.4 KPI-Focused Performance Testing, Analysis and Optimization

Single User Tests. Single user tests can check important business processes
already in the early phases of development projects. They focus on the end-to-
end response time and system resource consumption, and are able to break them
down into the system components. Single user tests provide baseline performance
figures which can serve as starting points for multi-user load tests. An important
aspect of single user tests is that the test system can be shared by many users for
different implementation and testing activities, when the test system is running
at moderate load. The another advantage of single user test is that they can be
easily repeated for accurate and reproducible measurement results.

To deliver relevant measurement results, possible caching and JIT (Just In
Time) compilation effects should be taken into consideration. Therefore, test
cases should first be executed to warm up the system, before measurements
start.

Let’s look at a simple procedure to check the linear dependency in resource
consumption using a single user test. Let’s suppose the linear dependency of
number of line items of a sales order should be checked, and a performance trace
is available which can measure the total response time and CPU time, as well as
the response time and CPU time of the methods and routines called. In a first
test run, you create a sales order with 5 line items, and in a second test run, you
create a sales order with 20 line items. When comparing the total response times
and CPU times, the increasing factor should be below 4. Otherwise a non-linear
dependency exists. To identify possible non-linear methods and subroutines, you
can compare the sorted hotspot lists of methods and subroutines in the perfor-
mance trace: they should stay in the same order. If the order is changed, those
methods and subroutines that have moved towards the top of the hotspot lists
are the candidates for a further detailed analysis.

Multi-user Load Testing. Multi-user load testing is used to generate a system
load by simulating a specified number of concurrent users, who execute defined
critical business processes. In addition to solving the functional issues which
occur under load and were not detected by single user tests, a much more im-
portant task of multi-user load testing is to monitor and understand the system
behavior under load. While the first part is to ensure the accurate simulation of
a specified system load, the second part is to analyze how the measured KPIs
react to the increasing system load. A system load is not only represented by the
number of concurrent users and the average think time, which is the elapsed time
between two successive user interaction step, but also impacted by the system
data used in the multi-user load tests [2].

Before starting with load tests, single user tests must be conducted. Based
on the single user measurement results, a prediction of the results of the load
test should be made assuming linear dependency of resource consumption, or
scalability. This is what we call a sizing procedure and will be described in
section 4. The extrapolated test results are verified in the multi-user load test,
thus they represent the success criteria of a multi-user load test project.

Benchmarking and Sizing in Developing Highly Scalable Enterprise Software 183

Custom load tests are often conducted in large, highly modified and mission-
critical software implementation projects at customer sites, shortly before going
live. A successful custom load test can ultimately ensure that the performance
requirements of a complex software application, including the hardware plat-
form, the system landscape and the communication network infrastructure, have
been met.

Within the development of standard application software, the major goals of
multi-user load testing are to analyze the scalability behavior regarding highly
concurrent usage of the software and to solve potential scalability issues before
release. The mathematical queuing theory [1] provides queuing models, for ex-
ample, the Markov Chain model M/M/n for a symmetric multiprocessor system
with n processors/cores, to enable the study of system response time behaviors
related to system utilization. The example below shows how to prove the CPU
scalability regarding number of concurrent users.

After carefully analyzing critical business processes, a representative sequence
of user interaction steps is determined. We simulate increasing numbers of con-
current users executing this sequence of user interaction steps with constant
think time and measure the KPIs of CPU time per user interaction step, CPU
utilization, and the corresponding response time. Putting these measurement
results together in a chart, as shown in Fig. 2, we can then exam the CPU
scalability:

– CPU time per user interaction step remains constant over increasing num-
bers of concurrent users. This corresponds to the fundamental assertion in
the queuing theory models, that the service time of a specific request is in-
dependent of the current system utilization. Otherwise, if the CPU time per
user interaction step increases, this would cause an over linear increase of
CPU utilization and a non-linear increase of response time, which we call a
“busy waiting” issue regarding the CPU scalability.

– CPU utilization increases linearly with the number of concurrent users. This
behavior demonstrates especially that the software is able to utilize avail-
able CPU resource in an efficient way. If the CPU utilization doesn’t in-
crease linearly with the number of concurrent users, then the response time
would increase rapidly, something we call a “serialization” issue of the CPU
scalability.

– Response time behaviors as expected by the queuing theory model. Accord-
ing to the M/M/n model, the response time should start with a constant
section, followed by a linearly increasing section, and finally ending in an
exponentially increasing section, where the CPU utilization is close to 100%.

Performance Optimization. Don’t start with any performance optimization
before you can measure the impact. This recommendation emphasizes that any
performance optimization should always be documented by measurements be-
fore and after the optimization to validate the improvement gained. Otherwise,
you don’t really know the effect of your optimization effort. All performance op-
timization concepts should be derived by analyzing the current measured KPIs,

184 X. Cheng

Fig. 2. Multi-user load tests of SAP NetWeaver Portal benchmark EP-ESS to prove
the CPU scalability

and by making forecasts of possible performance improvements. This forecasting
can be supported by additional prototyping and measurements efforts. Based on
realistic forecasts, many possible performance optimization concepts can then
be correctly prioritized. This helps in project planning and ensures maximum
success of a performance optimization project, also taking into consideration
all possible constraints of time, budget, development resources, and high-level
strategies.

Although good KPIs can give an indication of possible optimizations, devel-
oping optimization concepts remains a creative procedure, highly dependent on
the expertise and creativity of the software architects and developers involved.
Below we will discuss possible levels at which to implement performance op-
timizations, by going backwards in the software life cycle, from operation and
maintenance to requirement specification.

– Performance optimization by software configuration tuning. The
most effective and cost-efficient way of performance optimization is to solve
performance and scalability issues, identified during the productive usage of a
software application, by applying proper configurations. For this reason, SAP
provides its customers with a variety of configuration guidelines based on the
experiences made in our internal testing, to cover advanced landscaping and
high availability requirements and different usage types.

– Performance optimization by utilizing additional hardware
resources. If the software application is scalable regarding hardware

Benchmarking and Sizing in Developing Highly Scalable Enterprise Software 185

utilization, then any performance issues can be solved by adding more hard-
ware resources. This is a relatively cost-efficient way to solve the problem,
since today’s hardware purchase prices don’t play a dominating role in the
total cost of ownership (TCO). To proactively support the reliable estima-
tion of hardware requirements, SAP provides its customers with specific siz-
ing guidelines for all delivered software applications (http://service.sap.com/
sizing). The sizing aspect is discussed in section 4 of this paper.

– Performance optimization by bug fixing in the code. When viola-
tions against performance design patterns are identified in analyzing mea-
sured KPIs, and the issues can be fixed by changing the code, then this is
the most suitable performance optimization. As a disadvantage of this kind
of performance optimization, additional testing effort is necessary to avoid
functional destabilization. The necessary testing effort will depend on how
critical the code modification is.

– Performance optimization by improving the software architecture.
When the identified performance and scalability issues cannot be fixed by
simple code modification, and redesign of interfaces or fundamental changes
in underlying algorithms are necessary, then expensive effort for design, im-
plementation and testing is needed for performance optimization at this
level.

– Performance optimization by redesign of the business process and
its mapping onto the software solution. If no optimization potential can
be identified in the software application, the next step is to go a level higher
to consider the business process. Most solutions at this level are achieved by
optimizing the mapping of the business process into software concepts.

3 Benchmarking

SAP Standard Application Benchmarks are based on enterprise applications
used productively in customer environments. Thus they are eminently suitable
for helping customers make decisions for appropriate hardware platforms used
in their IT landscape. They are also used by hardware partners to conduct
platform tests. The benchmark certification procedure is monitored by the SAP
Benchmark Council made up of representatives of SAP and its hardware and
technology partners. A description of all SAP Standard Application Benchmarks
including the certified results can be found at SAP’s Benchmark Web site [7].

In SAP benchmarking, we use a measurement unit called SAPS (SAP Applica-
tion Performance Standard), for processing power related to business processes.
100 SAPS is defined as the processing power required to complete 2000 fully
business-processed order line items within one hour. Fully business-processed
means the complete business process of an order line item: creating the order,
creating a delivering note for the order, displaying the order, changing the deliv-
ery, posting a goods issue, listing orders, and creating an invoice. This business
process is represented by the Sales and Distribution (SD) benchmark, which is
the most established benchmark in the SAP Standard Application Benchmark
suite.

186 X. Cheng

Table 2. KPI values of a certified EP-ESS benchmark with SAP NetWeaver Portal
7.0, SP12, running on a 2 processors / 4 cores / 8 threads machine with approximately
10,000 SAPS

Number of concurrent users with 10 seconds think time 2600

CPU utilization 99%

Average response time 1.811 s

CPU time per user interaction step 0.018 s

Framework space 325 MB

User session space < 1 MB

Processing space 8.714 MB

GC interval 2.390 s

GC duration 0.424 s

In the course of the benchmarking process, the hardware partners execute the
SD benchmark or any other benchmark in the suite of specific SAP releases on
their hardware platforms to demonstrate their scalability and processing power.
The benchmark results, especially the SAPS numbers of specific hardware con-
figurations, are certified by SAP on behalf of the SAP Benchmark Council and
published at SAP’s Benchmark Web site. Using this information, SAP customers
are able to search the available hardware platforms for configurations that best
meet their business needs.

Among SAP Standard Application Benchmarks, there are currently two major
Java benchmarks: the EP-ESS (SAP NetWeaver Portal Employee Self-Service
Benchmark) and EP-PCC (SAP NetWeaver Portal People Centric CRM Bench-
mark) benchmarks. Employee self-service represents business scenarios for the
“employee” role, e.g. to record working time, to create leave requests, to display
overview of leave requests, to maintain personal data, address, bank information
and to request paycheck inquiries. The EP-ESS benchmark simulates a huge
number of concurrent users executing SAP NetWeaver Portal top level naviga-
tions. These navigation steps launch stateful business transactions in the back
end which are Single-Sign-On (SSO) supported, role-based and personalized.

The EP-ESS benchmark has been used as a tool by SAP and the JVM vendors
to improve the performance and scalability of application software and the JVM
platforms on different operating systems and different databases. Tab. 2 shows
the KPI values of a certified EP-ESS benchmark.

4 Sizing

The performance of customer production systems depends both on the perfor-
mance behavior of the software applications including OS, DB and JVM, and
on the hardware configurations. Following on from the performance assurance
processes during development and the benchmarking process used to prove the
scalability, the sizing process “delivers” the performance and scalability to cus-
tomer production systems by enabling correct prediction of hardware resource

Benchmarking and Sizing in Developing Highly Scalable Enterprise Software 187

requirements depending on the business processes. The sizing process consists
of two major parts: 1. Creation of sizing guidelines based on the results of per-
formance tests and analysis in the development phase. 2. Using these sizing
guidelines in customer sizing projects. [4] provides an in-depth description of the
SAP sizing process.

Sizing guidelines represent hardware resource consumption behavior of a
software application related to the influencing factors of the business process.
Identifying the influencing factors is a creative process which requires good un-
derstanding of the business process, the software architecture and the implemen-
tation techniques. In general, it is an iterative process of experimental measure-
ments and analysis. The results of this process are a set of influencing factors
and a related set of test cases. For these test cases, SAP measures the following
sizing KPIs to derive sizing formulas:

CPU Consumption. SAP typically measures CPU time per user interaction
step. For example, for the SAP NetWeaver Portal sizing, SAP measures the CPU
time of a portal navigation step. The influencing factors of a portal navigation
step, are the number and types of the iViews displayed on the target portal
page of a portal navigation step. An iView is an iFrame-like region of a portal
page, which hosts the UI of a back end application. Once an average CPU time
per user interaction step has been determined, the CPU sizing formula can be
expressed as:

numberOfCPUs =
CPUUIS · noUsers

(thinkT ime + responseT ime) · CPUUtilization
(1)

Where

noUsers = number of concurrent Users
CPUUIS = CPU time per user interaction step

In term of SAPS, the formula can be rewritten to read:

totalSAPS =
SAPSpCPUUIT · CPUUIS · noUsers

(thinkT ime + responseT ime) · CPUUtilization
(2)

Where

SAPSpCPUUIT = SAPS per CPU used in test

Memory. SAP also measures the peak memory consumption of a user session.
In case of Java applications, the three Java memory KPIs introduced in section
2.3 are measured. If the user session space dominates the memory consumption,
the memory sizing formula could be:

totalRequiredMemory = userSessionSpace · noUsers (3)

If the processing space dominates, a possible memory sizing model could
couple the memory sizing to the CPU sizing. For example, in sizing the SAP
NetWeaver Portal, SAP recommends 1 GB physical memory for every 300 SAPS
CPU power.

188 X. Cheng

Front End Network Requirement. As introduced early, SAP measures two
network KPIs: the number of network round trips and the data volume trans-
ferred per user interaction step. For a bandwidth sizing, the following formula
can be applied:

totalBandwidth = sf · transferredDataUIS · noUsers

thinkT ime + responseT ime
(4)

Where

sf = Saftey factor
transferredDataUIS = Transferred data volume per user interaction step

where the safetyFactor can be determined by taking account of the protocol
overhead and the possible utilization of a network connection.

Database Space. This is the space of the database tables needed during the
execution of the application.

Using the application specific sizing guidelines, technical consultants work
together with business department, implementation project team and hardware
vendor, to determine for the business process to be implemented:

– the application usage profile, e.g. the concrete values of the influencing
factors,

– the user activity profile, e.g. the number of concurrent users and average
think time.

The application usage profile and user activity profile are the required sizing
inputs. As a next step the formulas from the sizing guidelines can be applied
to calculate the required hardware resources. Different hardware vendors can
provide their proposals for the target hardware configurations, taking into con-
sideration system landscaping requirements like high availability, etc.

As a simple example, let’s consider the CPU sizing of SAP NetWeaver
Portal. To determine the application usage profile, we need to find out the
typical average portal page in terms of number and types of iViews displayed
on that page. With this information, a corresponding value of the term
“SAPSPerCPUUsedInTest · CPUT imePerUserInteractionStep” can be
found in the sizing guideline and the CPU sizing formula (2) can be applied. Note
that SAP assumes an average CPU utilization of 65% for production systems.

As a second example, let’s look at how to predict load test results based on
single user measurement results, by using the CPU sizing formula (1). Using
CPUTimePerUserInteractionStep from a single user test, thinkTime reflecting
the typical user behavior, and NumberOfCPUs of the test system, the formula (1)
represents the relationship between numberOfConcurrentUsers, responseTime
and CPUUtilization. In a first use case when you want to stress the application
at CPUUtilization, and based on the experiences made in single user tests, you

Benchmarking and Sizing in Developing Highly Scalable Enterprise Software 189

expect a responseTime (since thinkTime >> responseTime holds in general, the
estimated responseTime would have negligible impact on the term “thinkTime
+ responseTime”), then the numberOfConcurrentUsers to be simulated can be
determined. In a second use case when you want to simulate numberOfConcur-
rentUsers and use estimated responseTime, the resulting CPUUtilization can be
predicted.

[4] describes further sizing approaches used in customer sizing projects. The
Initial Sizing provides sizing statements related to SAP standard delivery of
software application. It is supported by a tool, the Quick Sizer which is avail-
able for SAP customers at http://service.sap.com/sizing. During Expert Sizing,
sizing measurements for highly modified software applications are conducted
at the customer site, to adjust the standard sizing guidelines accordingly. SAP
provides Delta Sizing and Upgrade Sizing to help customers when extending
business scenarios and upgrading to SAP new releases. User-Based Sizing and
Throughput-Based Sizing can be applied to help determine more accurate sizing
inputs. These depend on whether an application has user interaction or works
as background batch jobs.

5 Conclusion

SAP performance design patterns define the target behavior of software compo-
nents and interfaces and guide the performance considerations in the design and
implementation phases. SAP follows a KPI-focused approach for performance
testing, analysis and optimization. It enables the reliable detection of poten-
tial performance issues by testing a limited set of specified test cases. A set of
comprehensive performance KPIs ist used both in single user tests and multi-
user load tests to support the performance optimization processes by predicting
and documenting the performance improvements quantitatively, and to verify
scalability.

SAP introduces three Java memory KPIs. They are application-specific and
independent on the JVM configurations, thus they are used to support the Java
memory optimization. We also use GC KPIs indicating the performance impact
of Java garbage collection which are used for JVM configuration tuning.

SAP Standard Application Benchmarks enable a standardized comparison of
different hardware platforms and help SAP customers to make decisions for their
IT landscape. They are also used within SAP as a tool for performance opti-
mization and for verification of sizing statements. The SAP NetWeaver Portal
Employee Self Service benchmark EP-ESS is presented to illustrate the intro-
duced KPIs and the methodology of scalability tests.

With proven scalability, SAP’s sizing process reliably predicts the hardware re-
source requirements depending on the influencing factors of the business
processes to be implemented, for ensuring appropriate performance of customer
productive systems. As an example of this sizing process, we discussed the CPU
and Java memory sizing for SAP NetWeaver Portal.

190 X. Cheng

References

1. Bolch, G., et al.: Queuing Networks and Markov Chains: Modeling and Performance
Evaluation with Computer Science Applications. John Wiley & Sons, New York
(1998)

2. Cheng, X.: Demystify Java-Based Load Tests and Their Results. SAP Insider,
Wellesley Information Services, October-November-December (2006),
https://www.sdn.sap.com/irj/servlet/prt/portal/prtroot/docs/library/
uuid/c1c8a123-0e01-0010-f8bf-a2d8ea8ec5b7

3. Tow, D.: SQL Tuning. O’Reilly Media (December 2004)
4. Janssen, S., Marquard, U.: Sizing SAP Systems. Galileo Press GmbH, Bonn (2007)
5. Meier, R.: Techniques for minimizing the performance impact of Java garbage col-

lection across your system landscape. SAP Professional Journal 9(3), Wellesley In-
formation Services (May/June 2007)

6. Sun Microsystems: Java SE 6 HotSpotTM Virtual Machine Garbage Collection
Tuning. Sun Microsystems, SDN, http://java.sun.com/javase/technologies/
hotspot/gc/gc tuning 6.html

7. SAP Standard Application Benchmarks, http://www.sap.com/benchmark

https://www.sdn.sap.com/irj/servlet/prt/portal/prtroot/docs/library/uuid/c1c8a123-0e01-0010-f8bf-a2d8ea8ec5b7
https://www.sdn.sap.com/irj/servlet/prt/portal/prtroot/docs/library/uuid/c1c8a123-0e01-0010-f8bf-a2d8ea8ec5b7
http://java.sun.com/javase/technologies/
hotspot/gc/gc_tuning_6.html
http://www.sap.com/benchmark

Phase-Type Approximations for Message

Transmission Times in Web Services Reliable
Messaging

Philipp Reinecke and Katinka Wolter

Humboldt-Universität zu Berlin
Unter den Linden 6,

10099 Berlin
{preineck,wolter}@informatik.hu-berlin.de

Abstract. Web-Services based Service-Oriented Architectures (SOAs)
become ever more important. The Web Services Reliable Messaging
standard (WSRM) provides a reliable messaging layer to these systems.
In this work we present parameters for acyclic continuous phase-type
(ACPH) approximations for message transmission times in a WSRM
implementation confronted with several different levels of IP packet loss.
These parameters illustrate how large data sets may be represented by
just a few parameters. The ACPH approximations presented here can
be used for the stochastic modelling of SOA systems. We demonstrate
application of the models using an M/PH/1 queue.

Keywords: Phase-Type Distributions, WSRM, Modelling, Distribution
Fitting, Response Time Analysis, Queueing Model.

1 Introduction

Web-Services-based Service-Oriented Architectures (SOAs) play an increasing
role in private and commercial activities on the Internet. These systems require
reliable transmissions of SOAP messages over possibly unreliable links.

The Web Services Reliable Messaging (WSRM) standard provides an in-
terface for reliable message transmissions [1] over arbitrary SOAP transports.
WSRM operates on top of the existing network stack (e.g. using HTTP on top
of TCP/IP). From the application’s point of view, a WSRM implementation
guarantees several properties (e.g. INORDER, EXACTLY-ONCE) for message
transmissions.

WSRM employs an acknowledgement-based restart mechanism. The trans-
mission of SOAP messages is ensured by retransmitting messages whose arrival
has not been acknowledged within a certain timeout. As observed in [2], a restart
mechanism at this high level in the network stack is necessary even though the
TCP already provides reliable connections: High fault levels in the IP may result
in stalling of TCP connections, which in turn translate into message loss due to

S. Kounev, I. Gorton, and K. Sachs (Eds.): SIPEW 2008, LNCS 5119, pp. 191–207, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

192 P. Reinecke and K. Wolter

timeouts in the upper layers. Furthermore, it should be noted that the WSRM
handles a wide variety of faults which are not addressed by the TCP at all, e.g.
failures of intermediary SOAP nodes or failures in DNS resolution.

The timeout after which the message transmission task is restarted strongly
influences the timing characteristics of the WSRM as perceived by the applica-
tion. In previous work we studied the effect of different restart strategies [2], and
the adaptivity of restart strategies in the WSRM area [3].

In this work we provide phase-type approximations for the effective transmis-
sion times encountered in a WSRM implementation where messages are trans-
mitted over a link with IP packet loss. We consider three scenarios with different
loss levels and derive acyclic continuous phase-type (ACPH) approximations for
the transmission time distribution. We present three different approximations for
each data set: First, we use a simple ACPH(2) model fitted by matching the first
three moments [4]. The second model is a Hyper-Erlang distribution (HErD),
fitted using the G-FIT tool [5, 6]. Third, we approximate the trace distributions
with general ACPH distributions using the PhFit tool [7].

We provide several contributions. First, we show how a large data set can be
represented in just a few model parameters and can hence be stored in a very
efficient and compact way. Second, we provide a model of a lossy communication
network using WSRM that can be inserted into a larger model of e.g. a web
services scenario. We present a simple M/PH/1 queue as an example of how to
use our fitted models. In that sense, we provide benchmarks to evaluate web
services performance and reliability. Third, we compare different models as well
as different fitting tools on a large data set of measurements in an intricate
scenario. The shape of the empirical distribution is unlike any known probability
distribution, therefore a compromise must be found between matching the heavy
tail well, based on extremely few observations, and providing a good fit for the
bulk of the data.

The remainder of this paper is structured as follows: The next section briefly
introduces the basic formalisms employed throughout the paper. Section 3 pre-
sents the experiments. In Section 4 we discuss important properties of the data
sets and present the ACPH models. We evaluate our approximations in Sec-
tion 5. The paper concludes with an application of the models in an M/PH/1
queue.

2 Acyclic Phase-Type Distributions (ACPH)

Phase-type distributions represent the time to absorption in a Markov chain with
one absorbing state. Acyclic Phase-type distributions (APH) form an important
subclass of PH distributions. In this paper we focus on acyclic continuous phase-
type distributions (ACPH).

An ACPH model with N transient states is described by the tuple (Q, α),
where α = (α1, α2, . . . , αN) is the vector of initial probabilities, and Q is the

Phase-Type Approximations for Message Transmission Times in WSRM 193

transition matrix for the transient states. The underlying CTMC is specified
by [8]:

Q̂ :=
[

Q q
0 0

]

.

The column vector q can be easily derived from Q: q = −Q1l. The vector of
initial probabilities is

α̂ = (α, αN+1) with
N+1
∑

i=1

αi = 1.

Note that αN+1 = 0 for all distributions we consider here.
The probability density function (PDF) and the cumulative density function

(CDF) of an ACPH distribution are given by, respectively [7],

f(x) = αeQxq
F (x) = 1 − αeQx1l.

The ith non-central moment of an ACPH can be computed as [4]

E
[

X i
]

= i!α(−Q)−i1l.

In this work we present ACPH approximations of WSRM message transmission
times. We consider models from the general ACPH class and models from two
subclasses, viz. second-order ACPH models (ACPH(2)) and Hyper-Erlang dis-
tributions (HErD). The next two paragraphs discuss properties of these special
cases.

Second-Order ACPH. ACPH(2) models are comprised of only two transient
states, i.e.

α = (α, 1 − α)

Q =
[

−λ1 λ1
0 −λ2

]

.

ACPH(2) models are attractive due to their low number of states, which allows
for efficient models. Furthermore, using moment-matching [4], parameters for
these models can often be obtained directly from the first three moments.

However, precise matching of the first three moments with ACPH(2) is limited
by tight bounds on the second and third moment of the data. For data sets whose
moments are outside of these bounds, one must either employ a higher-order
ACPH or settle on a model that only approximates the second and/or third
moment [4].

Hyper-Erlang Distributions. Hyper-Erlang distributions (HErDs) consist of a
mixture of M Erlang distributions with parameters (λr, kr), r = 1, . . . , M , where
λr and kr give the rate and number of phases (or the shape), respectively, of the
rth Erlang distribution in the HErD.

194 P. Reinecke and K. Wolter

The transition matrix for the underlying CTMC has the following general
structure (r = 1, . . . , M):

Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

. . .
−λr−1 0 0

0 −λr λr 0
0 −λr λr 0

. . .
0 −λr 0 0

0 −λr+1 λr+1
. . .

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

For a HErD, the vector of initial probabilities (α) specifies the probabilities of
entering each Erlang branch (or the weights of the branches). Accordingly, in α
each weight αr is followed by kr − 1 zeros:

α = (α1, 0, . . . , 0, α2, 0, . . . , 0, αM , 0, . . . , 0).

Hyper-Erlang distributions allow us to approximate the distribution of the
data more closely than is possible with moment matching using second-order
acyclic PH distributions. Moreover, any ACPH can be approximated by a HErD
of sufficiently high order, although this may require a HErD with an infinite
number of states. On the other hand, typical HErD models have an order higher
than two and thus may become computationally expensive. However, HErD
matching can be performed more efficiently than general ACPH matching. See
e.g. [5, 6] for more detail on Hyper-Erlang distributions.

3 Experiments

Web Services Reliable Messaging provides reliable SOAP message transmissions
to Web Services by re-sending messages for which no acknowledgement has been
received before a timeout elapsed. Every message can thus be transmitted several
times. In particular, a retransmission may arrive earlier than the original trans-
mission. Our data sets present the time between the first attempt at sending the
message and the first time the message arrived at the destination. This Effective
Transmission Time (ETT) determines the effect of the WSRM on the applica-
tion [2, 3]. The current section describes the experiment setup and measurement
preparation procedures.

3.1 Experiment Setup

In our setup a Web Services client transmits one-way messages asynchronously
to a server, using WSRM. An enhanced version of Sandesha1/Axis1 [9, 10] pro-
vides the WSRM implementation for the experiments. The modifications add

Phase-Type Approximations for Message Transmission Times in WSRM 195

support for asynchronous message transmissions (implemented similarly to [11])
and improve Sandesha’s stability and performance.1 The operation environment
consists of a 10Mbit LAN connection, emulated on top of the physical 100Mbit
Ethernet, using the Linux traffic control facilities [12]. Fault injection occurs in
the 10Mbit connection on a dedicated host. We inject packet loss at the IP layer.

In each experiment run the client transmits 20000 messages with a payload of
256 bytes and a message inter-arrival time of 100ms. Experiment runs that take
longer than one hour to complete are discarded. In order to avoid the effects of
software aging, client and server are restarted between runs.

Packet Loss Model. IP Packet loss is generated according to a simplified
continuous-time Gilbert loss model with one loss-free and one lossy state. Gilbert
loss models generate sequences of alternating loss episodes and loss-free periods
of exponentially-distributed length, which capture characteristics of packet-loss
on Internet links quite well [13, 14, 15, 16, 17]. We consider three scenarios with
different mean loss episode and loss-free period lengths, presented in Tab. 1.

Table 1. Loss model scenarios

S1 S2 S3

Loss episode length 0.05 s 1 s 1 s
Loss-free period length 120 s 30 s 8 s

WSRM Restart Algorithms. We provide results for three different algorithms to
compute the restart timeout: The Fixed Intervals algorithm uses a constant time-
out of 4 s. The well-known Jacobson/Karn algorithm adjusts the timeout based
on the mean and variance of round-trip time observations [18, 19]. We set the pa-
rameters for the Jacobson/Karn algorithm as follows: k = 4, α = 1/8, β = 1/4, and
initial timeout RTOinitial = 4 s. Third, we use the QEST algorithm presented in
[20], which observes the distribution of completion times and computes a time-
out that minimises the expected completion time. The parameters for QEST
are: Number of buckets H = 1000, maximum timeout tmax = 60 s and initial
timeout RTOinitial = 4 s.

In order to reduce load on the medium, both Jacobson/Karn and QEST per-
form exponential back-off upon timeout, i.e. they double the restart timeout for
the next transmission.

3.2 Measurement Preparation

Measurements were obtained by off-line analysis of message send/receive events
recorded during the experiments.
1 The current branch of Sandesha development, Sandesha2/Axis2, supports asynchro-

nous invocations natively, but was not stable enough for the experiments. However,
the basic operation of different WSRM implementations can be considered compa-
rable.

196 P. Reinecke and K. Wolter

Accuracy. Since measurements were computed from time-stamps recorded on
two different machines, both system clocks needed to be synchronised. System
clocks were synchronised using NTP. Clock synchronisation in the test-bed was
assessed based on NTP log files. System clocks stayed within +/– 2ms of each
other during the experiments, which we consider sufficiently accurate so as to
not necessitate the use of skew removal procedures such as presented in e.g.
[21, 22, 23].

Artifacts. Many runs exhibited a transient increase of ETTs shortly after the
start of the experiment, whose root cause could not be identified. Since this phe-
nomenon affected experiments irrespective of the scenario or the restart strategy
used, we consider this an artifact introduced by the test-bed itself. We only in-
clude message numbers 1000, . . . , 20000 in our data sets.

Furthermore, all data sets for Fixed Intervals have minimum values of 8–9ms
(median 9–13ms), whereas in the S1 and S2 data sets minima for Jacobson/Karn
and QEST are in the range of 12–13ms (median 10–18ms). In the S3 data sets,
all strategies have similar minima and median (7–9ms and 11ms, respectively).

All experiments whose measurements have lower minima were performed some
time after the experiments with higher minima. The decrease indicates a change
in network characteristics in the time in between. The nature and cause of this
change is unknown. We consider this difference negligible for the approximations
presented in the next section.

4 Phase-Type Approximations

We approximate the data using different classes of acyclic phase-type distribu-
tions. For each scenario/algorithm combination we aggregate observations from
four runs into one data set (76004 samples) for the approximation, and keep
one run (19001 samples) for cross-evaluation of the models. We employ the R
statistics package [24] in the statistical evaluation of the data.

4.1 Data Set Characteristics

Table 2 presents some statistical properties of the data sets. SiFI, SiJK and
SiQ denote data sets for Fixed Intervals, Jacobson/Karn and QEST algorithm,
respectively, obtained in the ith scenario. Note that all data sets exhibit a co-
efficient of variation (CoV) above one, which points at possible heavy-tailed
behaviour of the distribution underlying the data.

Visual inspection of the empirical complementary cumulative density func-
tion (CCDF) for S1FI, S2FI and S3FI (Figures 1–3) reveals that the bulk of the
samples is small, with large values centred around 3 s and 6 s and few observa-
tions between the bulk and the extreme values. The ‘steps’ in the CCDF become
more pronounced with higher loss levels, e.g. in S3FI. The accumulation of ex-
treme values at 3 s and 6 s as well as the gaps in between are due to the way TCP

Phase-Type Approximations for Message Transmission Times in WSRM 197

Table 2. Statistical properties of the data sets (in ms)

S1FI S1JK S1Q S2FI S2JK S2Q S3FI S3JK S3Q

Mean 17.24 21.32 22.44 124.71 106.51 104.60 386.29 334.91 313.76
Std. Dev. 59.54 46.57 26.98 542.27 441.05 426.03 995.20 903.30 955.51
Minimum 8 12 12 8 12 12 8 9 7
Median 11 16 18 11 17 17 11 11 11
95% quantile 19 24 27 213 179 449 3011 2404 1986
99% quantile 152 162 160 3014 2883 2674 4051 3031 3140
Maximum 3017 2226 562 6280 6562 9260 9900 12499 21056
CoV 11.91 4.79 1.45 18.91 17.15 16.59 6.64 7.23 9.27

detects packet loss during the three-way handshake on connection setup: The
TCP starts with a fixed retransmission timeout (RTO) of 3 s, which is doubled
on every expiration [19]. This means that any SOAP message transmission for
which the TCP connection setup experiences packet loss will be delayed by at
least 3 s. Since the Fixed Intervals algorithm restarts the transmission only if
the message has not been acknowledged after 4 s, it will not resend messages for
which only one packet loss happened during connection setup. These message will
have effective transmission times between 3 and 4 s. Messages whose connection
setup suffers from more than one packet loss are delayed by more than 4 s and
will thus be resent. If the retransmission does not experience packet loss, it will
succeed earlier than the first one. In this case, instead of a large ETT of 3 s we
observe a small ETT from the bulk of the distribution. On the other hand, some
retransmissions will also be delayed by packet loss. Since these messages were
restarted after at least 4 s and experience a minimum delay of 3 s, their ETT is
above 7 s. Then, the first transmission, which was delayed by only 6 s, will finish
earlier, which explains the accumulation of samples around 6 s.

In the interest of brevity we omit the empirical CCDFs of the data sets from
the experiments with Jacobson/Karn and QEST. These differ from the observa-
tions for the Fixed Intervals algorithm in that they gather more samples in the
bulk. In particular, in the S1 data set, Jacobson/Karn has fewer observations
around 3 s, while for QEST the tail of the observations breaks down even below
1 s. With higher loss levels, however, both start to show peaks around 3 s and 6 s
similar to observations from Fixed Intervals. This can be explained by the way in
which these algorithms adjust the restart timeout: Message transmissions that
are not delayed by packet loss finish very fast. Based on observations of these
low completion times, both algorithms compute low timeout values (with Ja-
cobson/Karn being more conservative), typically much lower than the 4 s of the
Fixed Intervals algorithm. These lower timeouts allow the algorithms to detect
(and restart) delayed transmissions early, which results in low completion times.
On the other hand, Jacobson/Karn and QEST perform exponential back-off
when the timeout elapses. With higher loss levels, it is likely that several time-
outs elapse successively. Then, the timeout grows quickly, eventually allowing

198 P. Reinecke and K. Wolter

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0.1 1 10 100 1000

C
C

D
F

ETT in ms

S1FI
ACPH(2)

HErD
ACPH(30)

Fig. 1. Empirical CCDF and CCDFs of the approximations for S1FI

even very slow transmissions to finish without restart. When the first transmis-
sion completes without restart, the timeout is recomputed from the observations.
The algorithm will then again trigger restarts of slow transmissions.

Table 3. Parameters for the ACPH(2) models, obtained by moment matching

S1FI S1JK S1Q S2FI S2JK S2Q S3FI S3JK S3Q

α1 2.05e-03 2.46e-03 9.07e-03 1.00e-01 1.10e-01 7.86e-02 2.62e-01 2.29e-01 5.70e-02
λ1 1.11e-03 1.66e-03 8.13e-03 8.06e-04 1.04e-03 9.13e-04 6.78e-04 7.05e-04 3.53e-04
λ2 6.49e-02 5.04e-02 4.69e-02 7.21e+01 8.36e+01 5.40e-02 1.91e+01 8.80e-02 6.57e-03

4.2 ACPH(2)-Approximation

Table 3 presents the ACPH(2) models obtained by moment-matching [4] for the
first three moments. Note that the third moment could not be matched exactly
by an ACPH(2) in data sets S2FI, S2JK and S3FI. In these cases we approximate
the third moment as suggested in [4].

4.3 Hyper-Erlang Approximation

We employ the G-FIT tool [5], which implements an EM-algorithm for fitting
the parameters of a HErD to a data set. In order to improve the quality of the

Phase-Type Approximations for Message Transmission Times in WSRM 199

fitting, we initialise the parameters λr and α using the logarithmic aggregation
method presented in [6]. We then fit the parameters using the EM algorithm
and the whole (i.e. non-aggregated) data set.

We found that using a Hyper-Erlang distribution with 15 branches and shape
parameters kr = r for the rth branch provided good approximation of the data.
Table 4 shows the parameters for the data set S2FI. Parameters for the other
data sets can be downloaded from [25].

Table 4. HErD parameters for S2FI. The shape parameter kr of the rth Erlang branch
is kr = r.

r αr λr αr+1 λr+1 αr+2 λr+2 αr+3 λr+3

1 1.11e-09 2.20e-03 2.35e-05 4.77e-03 1.03e-04 3.631e-02 4.05e-03 9.47e-03
5 1.87e-03 9.22e-02 1.26e-03 7.10e-03 8.05e-14 2.71e-03 4.98e-03 3.36e-02
9 6.26e-03 8.430e-03 6.69e-03 6.92e-02 1.46e-02 7.70e-02 7.64e-03 4.47e-01

13 3.44e-02 4.48e-03 3.42e-02 1.14e+00 8.84e-01 1.24e+00

4.4 ACPH Parameters

We use the PhFit tool [7] to fit general ACPH distributions to the data. In order
to reduce the time needed for fitting the data, we used logarithmic aggrega-
tion [6] to reduce the size of the data sets before applying PhFit. We compared
approximations using the full data sets to those obtained using the aggregated
representation and found that the aggregation procedure had no detrimental
effect on the quality of the models.

We present here approximations with 30 phases in the body and no special
treatment for the tail, with an upper limit of body fitting at the 0.001 quantile.
It should be noted that one of the strengths of PhFit lies in fitting the body and
the tail of the data separately, which provides for better approximations (at the
cost of losing the convenient closed-form phase-type representation). However,
with our data sets we were not able to obtain feasible parameters for the tail

Table 5. General ACPH(30) parameters for S2FI

i αi λi αi+1 λi+1 αi+2 λi+2 αi+3 λi+3

1 4.36e-02 1.38e-04 6.51e-03 1.82e-02 7.36e-04 2.28e-02 1.80e-02 6.43e-02
5 1.80e-04 6.56e-02 8.85e-06 6.94e-02 4.09e-05 7.10e-02 1.54e-03 8.28e-02
9 4.83e-04 9.55e-02 1.76e-05 1.16e-01 5.85e-07 1.44e-01 9.30e-05 1.55e-01

13 2.91e-03 1.93e-01 9.45e-05 1.94e-01 2.83e-06 1.98e-01 1.33e-05 2.91e-01
17 1.34e-05 3.89e-01 1.41e-05 5.60e-01 5.18e-06 5.82e-01 4.90e-02 8.03e-01
21 7.08e-01 8.14e-01 1.66e-01 8.14e-01 2.15e-03 8.15e-01 2.44e-04 8.15e-01
25 6.06e-05 8.15e-01 1.59e-05 8.15e-01 2.11e-06 8.15e-01 9.31e-06 8.15e-01
29 1.86e-05 8.15e-01 4.42e-06 8.15e-01

200 P. Reinecke and K. Wolter

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

C
C

D
F

ETT in ms

S2FI
ACPH(2)

HErD
ACPH(30)

Fig. 2. Empirical CCDF and CCDFs of the approximations for S2FI

fitting. For this reason, we expect our ACPH(30) models to not represent the
tail behaviour correctly. Table 5 presents the ACPH(30) model for the S2FI data
set. As with the HErD models, general ACPH(30) models for the other data sets
are available from [25].

5 Evaluation

In the previous section we presented three models for each data set. In order to
facilitate appropriate application of the models, we will now evaluate the quality
of these approximations.

Visual inspection of the ACPH models for e.g. the Fixed Intervals data sets
(Figures 1–3) shows that the models approximate the CCDF of the data quite
differently. The ACPH(2) models tend to follow the general shape of the em-
pirical CCDF only roughly. In Fig. 1 the CCDF of the ACPH(2) fluctuates
around the empirical CCDF, while in S2FI and S3FI the ACPH(2) overestimates
the portion of samples below 10ms. In contrast, the more complex HErD and
the ACPH(30) models provide good approximations of the CCDF for all three
scenarios. Both follow the general shape of the CCDF closely.

Note that the ACPH(30) model underestimates the length of the tail in the
model for S1FI, and overestimates it in S2FI and S3FI. This behaviour may be
avoided by appending a special tail to the distribution. However, one cannot
easily derive the actual shape of the tail from the data. In fact, one may argue
that extreme values are rare events, and that thus the breakdown observed in

Phase-Type Approximations for Message Transmission Times in WSRM 201

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

C
C

D
F

ETT in ms

S3FI
ACPH(2)

HErD
ACPH(30)

Fig. 3. Empirical CCDF and CCDFs of the approximations for S3FI

the data sets is simply an artifact of the limited observation period. On the
other hand, restart aims to reduce effective transmission times by replacing slow
transmissions with fast ones (cf. (4.1)), which makes an abrupt tail breakdown
appear likely.

While the similarity of the shape of the CCDFs offers some measure of the
goodness of the approximation, other quality measures may be of more interest
in particular applications. In [26, 27], several quality measures were proposed.

Table 6. Quality measures employed in the evaluation

Measure Definition

Rel. Err. in the first moment (c1 is the mean) e1 = |c1(F̂)−c1(F)|
c1(F)

Rel. Err. in the second moment (c2 is the variance) e2 = |c2(F̂)−c2(F)|
c2(F)

Rel. Err. in the third moment (c3 is the centred
third moment)

e3 = |c3(F̂)−c3(F)|
c3(F)

Absolute PDF area distance PDFAD =
� ∞
0 |f̂(t) − f(t)|dt

Absolute CDF area distance CDFAD =
� ∞
0 |F̂ (t) − F (t)|dt

202 P. Reinecke and K. Wolter

e1 e2 e3 DAD CDFAD

1e
−

15
1e

−
07

1e
+

01

Fig. 4. Goodness measures for the ACPH(2) (dark grey), HErD (medium grey) and
ACPH(30) (light grey) models

Our quality measures are summarised in Tab. 6. Note that area distances have
been computed up to the maximum of the observations for each data set.

Figure 4 presents an overview of the relative error in the first three moments
(e1, . . . , e3), absolute PDF area distance (PDFAD) and absolute CDF area dis-
tance (CDFAD). The figure shows values for the measures for the nine models we
obtained using each approach, e.g. the first nine bars (dark grey) of every mea-
sure represent the quality of the ACPH(2) models for S1FI, S1JK, S1Q and so on.

We note that the ACPH(2) models (dark grey) provide the best approxima-
tions of the first three moments. Only in S2FI, S2JK and S3FI do we observe a
significant relative error in the third moment. Recall that for these data sets,
no exact matching of the third moment was possible, and thus this error is to
be expected. The Hyper-Erlang models match the first moment precisely, but
exhibit much larger relative errors in the second and third moments. Finally,
our ACPH(30) models have large relative errors in the first three moments. Ac-
cording to the area distance measures, all models approximate the data similarly
well.

Cross-Evaluation. Recall that we used only four runs from each scenario for
fitting the models. Table 7 lists statistical properties of the fifth run for each
scenario and restart algorithm. We observe subtle differences between the data
sets used for the fitting procedure and the evaluation data sets, however, the
data sets obviously exhibit the same general characteristics.

Phase-Type Approximations for Message Transmission Times in WSRM 203

Table 7. Statistical properties of the data sets used for cross-evaluation

S1FI S1JK S1Q S2FI S2JK S2Q S3FI S3JK S3Q

Mean 19.38 20.32 19.22 120.68 117.10 105.37 403.33 275.83 260.86
Std. Dev. 63.41 49.96 22.86 538.25 466.86 399.14 1021.36 692.76 654.60
Minimum 9 12 12 9 12 12 8 9 9
Median 13 16 15 10 16 15 10 13 13
95% quantile 25 23 23 161 267 495 3009 1879 1803
99% quantile 149 160 162 3013 2551 2516 4059 3017 3013
Maximum 3017 2106 328 4465 3863 3366 9018 5467 6011
CoV 10.71 6.04 1.41 19.89 15.90 14.35 6.41 6.31 6.30

e1 e2 e3 DAD CDFAD

1e
−

02
1e

+
00

1e
+

02

Fig. 5. Goodness measures with cross-evaluation

Using these data sets, we can assess how well the models capture the typical
characteristics of the data. Figure 5 presents the goodness measures for this case.
As expected, the goodness of the fit decreases. In particular, the first moments
are not matched exactly by any of the models. However, the models still fit the
data quite well.

6 Application

The models presented here can be easily employed in performance modelling of
Web Services that rely on WSRM as the transport between different components.

204 P. Reinecke and K. Wolter

To illustrate this potential application we set up a simple M/PH/1 queueing
model [8] using the ACPH models for the S2FI data set. In this example, the
phase-type distributed service process models the transmission of SOAP mes-
sages over a WSRM implementation that uses the Fixed Intervals algorithm
to send messages over a link with IP packet loss characteristics according to a
Gilbert model. The stream of SOAP messages generated by the Web Service
application is modelled by a Markovian arrival process. We are interested in the
mean queue length versus the utilisation of the system, from which the reader
may easily compute other standard measures in queueing systems such as res-
ponse time, waiting time, etc.

The mean service time, that is the mean of the models fitted to our data,
equals E[S] = 124.71 ms for both the ACPH(2) and the HErD model, and
E[S] = 341.85 ms for the ACPH(30) model. Note that the ACPH(30) model
overestimates the mean service time.

We vary the arrival rate λ to obtain different values of the utilisation ρ of the
queue. The M/PH/1 queueing system then has the following matrix-geometric
solution for the mean queue length [8]:

E[N] = z1 (I − R)−2 1l, (1)

where I is the identity matrix. For the M/PH/1 queue the matrix R evaluates
to

R = λ
(

λI − λB̃ − Q
)−1

,

where the matrix B̃ is the cross-product of the unit vector 1l and the vector
of initial probabilities α, i.e. B̃ = 1l.α. The steady-state boundary probability
vector can then be computed as (cf. [8], (8.37))

z1 = (1 − ρ)αR.

Similar in structure to a DTMC the steady-state probability vectors can be
computed as zi = z1.Ri−1, i = 1, 2,

Figure 6(a) shows the mean queue length of an M/PH/1 on a log-scale where
the three curves differ in the service process represented by the three models we
fit to our data, the ACPH(2), the HErD and the ACPH(30) model. Interestingly,
both the ACPH(2) and the HErD service distributions not only have the same
mean value but also a fairly similar development of the mean queue length. When
looking at those two curves one may decide that there is not much gain in the
huge HErD model, as compared to the conveniently small two-state ACPH(2)
model. We will see that this conclusion is justified in other respects as well.

The caudal curve, shown in Fig. 6(b), represents the tail behaviour of a matrix-
geometric queue [28]. The caudal curve is constructed using the largest real
eigenvalue of the matrix R versus the utilisation ρ of the queue. Equation (17)
in [28] defines the blocking probability in a matrix-geometric queue, showing
that if the caudal curve is above the bisector the queue length distribution has a
heavy tail, while if the caudal curve is below the bisector there is little probability
mass in the tail.

Phase-Type Approximations for Message Transmission Times in WSRM 205

 0.1

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

M
ea

n
Q

ue
ue

 L
en

gt
h

Utilisation ρ

ACPH(2)
HErD

ACPH(30)

(a) Mean queue length

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
au

da
l C

ur
ve

Utilisation ρ

ACPH(2)
HErD

ACPH(30)

(b) Caudal curves

Fig. 6. Mean queue length and caudal curves for all three models in S2FI

As were the expected queue lengths, also the caudal curves using the ACPH(2)
and the HErD service time distribution are very similar. More precisely, for low
load the ACPH(2) service time distribution has the heavier tail, while for high
load the curves cross and the HErD model leads to the heavier tail.

Since the ACPH(30) model overestimates the tail of the data set, the tail of the
queue length distribution is overestimated as well. Furthermore, the large mean
value of the ACPH(30) model can be traced back to the overestimated tail.

One may summarise, that for low load the ACPH(2) model gives a conve-
niently small model that leads to reasonably good results. For high load one
might rather resort to the large HErD model, while the ACPH(30) model should
be applied with care.

7 Conclusion and Future Work

In this work we presented phase-type models for the distributions of the effective
message transmission times in a WSRM implementation under various levels of
packet loss. We evaluated the goodness of fit of these models and demonstrated
the use of ACPH models in an M/PH/1 queueing model. We conclude that the
convenient ACPH(2) class may be sufficient to model the observed transmission
times, while there is little gain with large HErD models. Furthermore, general
ACPH(30) models perform rather poorly without special treatment for the tail
of the distributions.

In this paper we limited ourselves to continuous phase-type distributions.
According to [29], discrete phase-type (DPH) models may be preferable for fitting
distributions with abrupt changes in the CDF. Since our data exhibits such
changes, future work will include trying to fit DPH distributions with appropriate
scale factors to these data sets.

Acknowledgements. Philipp Reinecke is supported by the German Science
Foundation (DFG), grant number Wo-898/2-1. We also thank Miklós Telek for
his help with the PhFit tool.

206 P. Reinecke and K. Wolter

References

[1] BEA Systems, IBM, Microsoft Corporation Inc, TIBCO Software, Inc.: Web Ser-
vices Reliable Messaging Protocol (WS-ReliableMessaging) (February 2005)

[2] Reinecke, P., van Moorsel, A.P.A., Wolter, K.: The Fast and the Fair: A Fault-
Injection-Driven Comparison of Restart Oracles for Reliable Web Services. In:
QEST 2006: Proceedings of the 3rd International Conference on the Quantitative
Evaluation of Systems, Washington, DC, USA, pp. 375–384. IEEE Computer
Society, Los Alamitos (2006)

[3] Reinecke, P., Wolter, K.: Adaptivity Metric and Performance for Restart Strate-
gies in Web Services Reliable Messaging. In: WOSP 2008 (2008) (accepted for
publication)

[4] Telek, M., Heindl, A.: Matching Moments for Acyclic Discrete and Continous
Phase-Type Distributions of second order. International Journal of Simulation
Systems, Science & Technology 3(3–4), 47–57 (2002)

[5] Thümmler, A., Buchholz, P., Telek, M.: A Novel Approach for Phase-Type Fitting
with the EM Algorithm. IEEE Trans. Dependable Secur. Comput. 3(3), 245–258
(2006)

[6] Panchenko, A., Thümmler, A.: Efficient phase-type fitting with aggregated traffic
traces. Perform. Eval. 64(7-8), 629–645 (2007)

[7] Horváth, A., Telek, M.: PhFit: A General Phase-Type Fitting Tool. In: Field, T.,
Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp.
82–91. Springer, Heidelberg (2002)

[8] Haverkort, B.R.: Performance of Computer Communication Systems: A Model-
Based Approach. John Wiley & Sons, Chichester (1998)

[9] The Apache Software Foundation: Apache Sandesha, http://ws.apache.org/
sandesha/

[10] The Apache Software Foundation: Apache Axis, http://ws.apache.org/axis/
[11] Zdun, U., Völter, M., Kircher, M.: Pattern-Based Design of an Asynchronous

Invocation Framework for Web Services. Int. J. Web Service Res. 1(3), 42–62
(2004)

[12] Various authors: NetEm – LinuxNet (Last visited October 8th, 2007),
http://linux-net.osdl.org/index.php/Netem

[13] Zhang, Y., Paxson, V., Shenker, S.: The Stationarity of Internet Path Properties:
Routing, Loss, and Throughput. ACIRI Technical Report (2000)

[14] Zhang, Y., Du, N., Paxson, V., Shenker, S.: On the Constancy of Internet Path
Properties. In: Proceedings of the ACM SIGCOMM Internet Measurement Work-
shop (2001)

[15] Varela, M., Marsh, I., Grönvall, B.: A systematic study of PESQ’s behavior (from
a networking perspective). In: Proceedings of the 5th International Conference
MESAQIN 2006: Measurement of Audio and Video Quality in Networks (2006)

[16] Sanneck, H., Carle, G., Koodli, R.: A framework model for packet loss metrics
based on loss runlengths. In: Proceedings of the SPIE/ACM SIGMM Multimedia
Computing and Networking Conference 2000, San Jose, CA, SPIE/ACM SIGMM
(January 2000)

[17] Jiang, W., Schulzrinne, H.: Modeling of Packet Loss and Delay and Their Effect
on Real-Time Multimedia Service Quality. In: Proc. NOSSDAV (2000)

[18] Karn, P., Partridge, C.: Improving Round-Trip Time Estimates in Reliable Trans-
port Protocols. ACM Transactions on Computer Systems 9(4), 364–373 (1991)

http://ws.apache.org/
sandesha/
http://ws.apache.org/axis/
http://linux-net.osdl.org/index.php/Netem

Phase-Type Approximations for Message Transmission Times in WSRM 207

[19] Krishnamurthy, B., Rexford, J.: Web Protocols and Practice. Addison Wesley,
Reading (2001)

[20] van Moorsel, A., Wolter, K.: Analysis and Algorithms for Restart. In: Proc. 1st
International Conference on the Quantitative Evaluation of Systems (QEST),
Twente, The Netherlands, September 2004, pp. 195–204 (2004)

[21] Paxson, V.: End-to-End Internet Packet Dynamics. In: Proceedings of the ACM
SIGCOMM 1997 conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, Cannes, France. Computer Communi-
cation Review, vol. 27(4), pp. 139–154. ACM Press (1997)

[22] Moon, S.B., Skelly, P., Towsley, D.: Estimation and Removal of Clock Skew from
Network Delay Measurements. Technical report, University of Massachusetts,
Amherst, MA, USA (1998)

[23] Khlifi, H., Grégoire, J.C.: Low-complexity offline and online clock skew estimation
and removal. Computer Networks: The International Journal of Computer and
Telecommunications Networking 50(11), 1872–1884 (2006)

[24] R Development Core Team: R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria (2006) ISBN
3-900051-07-0

[25] Reinecke, P., Wolter, K.: ACPH models for WSRM (2008), http://www.
informatik.hu-berlin.de/∼preineck/acphmodels/

[26] Bobbio, A., Telek, M.: A Benchmark for PH Estimation Algorithm: Results for
Acyclic-PH (1994)

[27] Horváth, A., Telek, M.: Approximating heavy tailed behaviour with Phase type
distributions. In: 3rd International Conference on Matrix-Analytic Methods in
Stochastic models (MAM 2003) (2000)

[28] Haverkort, B.R., van Moorsel, A.P., Dijkstra, A.: MGMtool: A Performance Mod-
elling Tool based on Matrix Geometric Techniques. In: Pooley, R., Hillston, J.
(eds.) Computer Performance Evaluation 1992, Modelling Techniques and Tools,
Antony Rowe Ltd, pp. 397–401 (1992)

[29] Bobbio, A., Horváth, A., Telek, M.: The scale factor: a new degree of freedom in
phase-type approximation. Perform. Eval. 56(1-4), 121–144 (2004)

http://www.
informatik.hu-berlin.de/~preineck/acphmodels/

A Framework for Simulation Models of

Service-Oriented Architectures�

Falko Bause, Peter Buchholz, Jan Kriege, and Sebastian Vastag

Informatik IV, TU Dortmund
D-44221 Dortmund, Germany

{falko.bause,peter.buchholz,jan.kriege,sebastian.vastag}@udo.edu

Abstract. Service-Oriented Architectures (SOA) are one of the main
paradigms for future software systems. Since these software systems are
composed of a large number of different components it is non trivial to as-
sure an adequate Quality of Service (QoS) of the overall system and per-
formance analysis becomes an important issue. To consider performance
issues early in the development process, a model based approach becomes
necessary which has to be embedded into the development process of
SOA to avoid overhead and assure consistency. In particular the specifi-
cation of the software system should be used as a base for the resulting
performance model. However, since common specification techniques for
SOA are very high level, many details have to be added to come to an
executable simulation model which is often needed for a detailed analysis
of performance or dependability. This paper presents an approach which
combines an extended version of process chains to describe the SOA com-
ponents and some quantitative specifications at the higher levels. For the
modelling of the detailed architecture and protocols the simulation tool
OMNeT++ is used. Both modelling levels are combined resulting in an
executable simulation model for the whole architecture.

Keywords: Service-Oriented Architectures, Simulation, Process Chains,
OMNeT++.

1 Introduction

Service-Oriented Architectures (SOA) are one of the major paradigms to de-
scribe and realize complex software systems as they are required in todays IT-
infrastructure. The description level of SOA is very high such that several details
are hidden in the description and a loose coupling between different processes
is assumed for a functioning system. Nevertheless, quantitative aspects like per-
formance or dependability are major issues of SOA which are only partially
addressed up to now. In general Service Level Agreements (SLAs) are nego-
tiated between service provider (i.e. the SOA component) and the user which
could be some business process or another component in a hierarchical SOA.
� This research was supported by the Deutsche Forschungsgemeinschaft as part of the

Collaborative Research Center “Modelling of Large Logistics Networks”(559).

S. Kounev, I. Gorton, and K. Sachs (Eds.): SIPEW 2008, LNCS 5119, pp. 208–227, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Framework for Simulation Models of Service-Oriented Architectures 209

This implies that the non-functional properties of SOA components are known
and are considered during orchestration [11]. Both tasks are non trivial. Since
performance and dependability issues should be considered during the whole
software design process [9], modeling is often the method of choice. However,
the common description level of SOA is too high to allow a direct derivation
of performance models. Thus, a common way is to manually derive an abstract
performance model from a SOA specification and solve this model analytically
[10,13]. Although the use of simple analytically tractable models is often a good
choice, in particular in the early design phases, these models reach their limits
when detailed design decisions have to be made. In those situations simulation
models are more adequate. However, it is known that the realization of simula-
tion models is cumbersome and error prone. To obtain more reliable simulation
models, the description language has to consider the specifics of the application
domain [14] and predefined standard components have to be used whenever pos-
sible. For SOA this is a problem, if apart from the high level orchestration of
services also details of the communication between services have to be described
in the model. At the higher level, processes have to be described using the same
graphical notation like process chains or one of the description languages like
BPEL. Lower levels consisting of the protocols and resources required by the
different operations cannot be adequately specified with these approaches. More
appropriate at this level is the model world of some network simulator which on
the other hand cannot be applied for the specification of SOA.

In this paper we propose a hybrid specification approach that combines the
best of both worlds. On the one hand we use ProC/B [2] for the specification of
SOA. ProC/B is a modeling paradigm to specify process chain models at a high
level using a graphical interface. On the other hand we apply OMNeT++ [12]
for the specification of network resources used by the components of SOA for
communication. The resulting model is mapped onto a C++ simulation model
using the simulation kernel of OMNeT++. The approach has several advantages
since it allows one to use the high level graphical description format of ProC/B
and the predefined network components of OMNeT++. Furthermore, it results
in relatively efficient simulation models (see also [3]) based on the simulation
functionality of OMNeT++. Despite from an in principle very efficient simulator,
the problem of large models and different time scales in large models remains
and can only be resolved by choosing an appropriate abstraction level.

The combination of the high level view of ProC/B and the low level view of
OMNeT++ is not straightforward, especially if the models at the different levels
should be kept as they are. In this paper, we propose an approach to combine
both models by assigning remote service calls in ProC/B to message transfers
in OMNeT++. This can be done extending existing models only slightly. One
part of the extension involves annotations of the ProC/B model, similar to an-
notations of UML models for performance analysis [1,16]. The other part of the
extension concerns the network resources which are adapted to account for the
annotations of the ProC/B model.

210 F. Bause et al.

The paper is structured as follows. In the next two sections ProC/B and
OMNeT++ are briefly introduced. Section 4 presents the new concepts and
constructs to combine both worlds. Then, in section 5, the approach is clari-
fied by means of an example. The paper ends with the conclusions.

2 Process Chain Models

Various versions of process chains exist in the literature. Our work is based
on a variant introduced by Kuhn ([7,8]) which is used within the collaborative
research center “Modelling of Large Logistics Networks” 559 (CRC 559;[5]) for
modelling and performance evaluation of logistics networks. Since process chains
are a descriptive tool they do not allow one to derive simulation models automat-
ically. In former times simulation models had to be build on their own without
any formal relation to the process chain model, implying well-known problems of
additional modelling effort or inconsistencies between the models. ProC/B [2] is
an approach to diminish these problems by enhancing and stating the informal
process chain description more precisely (cf. [4]). ProC/B captures the structure
of a system in form of function units (FUs) and the behaviour by process chains
(PCs). In ProC/B , FUs might offer services, which can be used by activities
of process chains. Each service is again described by a process chain and can
use services of internal or imported FUs, thus resulting in a hierarchical model
description.

Fig. 1 shows the top level of an example of a ProC/B model. The model con-
sists of a single PC, named customer and a single user-defined FU
Travel agency, which offers several services. In this example all services, ex-
cept submit form, require no input parameters and give no result values. A
process chain element (PCE) of a PC might call a service of a FU by specifying
the name of FU and service together with the necessary parameters. The mech-
anism is similar to most programming languages, e.g. the activity submit form
calls service submit form of FU Travel agency setting the formal parameter
travel info to data.travel info1.

The ProC/B model of Fig. 1 represents a use case of the “Web Services Ar-
chitecture Usage Scenarios”[15] where customers contact a travel agency’s Web
site and ask for information on flights and hotel rooms, select a specific combina-
tion, which is then booked by the travel agency. PC customer in Fig. 1 directly
visualises a customer’s behaviour: First the customer requests a Web form, com-
pletes it and submits the filled form to the agency’s Web site. The travel agent
sends back a list of available flights from which the customer makes a choice.
After submitting the option, the travel agent responds with a list of available ac-
commodations, so that the customer again can make his choice. The travel agent
finalises the transaction by booking flight and hotel room and charging the cus-
tomer’s credit card, which all is done by service submit accommodation choice

1 Access notations to parameters and variables of processes are prefixed with keyword
data for technical reasons in order to distinguish them from global variables. Global
variables are not shown in Fig. 1.

A Framework for Simulation Models of Service-Oriented Architectures 211

E
V

E
R

Y
 n

eg
ex

p(
1/

30
00

.0
)

ra
nd

in
t(

1,
3)

(r
an

di
nt

(1
,3

):
IN

T
)

C
us

to
m

er
(t

ra
ve

l_
in

fo
:IN

T
)

()

{r
eq

ue
st

 a
va

ila
bi

lit
ie

s
ab

ou
t s

om
e

tr
av

el
 d

at
es

}

T
ra

ve
l_

ag
en

cy
.

re
qu

es
t_

fo
rm

re
qu

es
t_

fo
rm

D
E

LA
Y

fil
l_

ou
t_

fo
rm

(n
or

m
al

(3
00

00
,1

00
00

))
T

ra
ve

l_
ag

en
cy

.
su

bm
it_

fo
rm

su
bm

it_
fo

rm
(d

at
a.

tr
av

el
_i

nf
o)

T
ra

ve
l_

ag
en

cy

re
qu

es
t_

fo
rm

su
bm

it_
ac

co
m

m
od

at
io

n_
ch

oi
ce

su
bm

it_
fli

gh
t

su
bm

it_
fo

rm
(t

ra
ve

l_
in

fo
:IN

T
)

D
E

LA
Y

ch
oo

se
_f

lig
ht

(n
or

m
al

(2
00

00
,5

00
0)

)

{u
se

r
ch

oo
se

s
fli

gh
t a

nd
 lo

ok
s

fo
r

ho
te

ls
}

T
ra

ve
l_

ag
en

cy
.

su
bm

it_
fli

gh
t

su
bm

it_
fli

gh
t

{u
se

r
bo

ok
s

ho
te

l r
oo

m
 a

nd
 fl

ig
ht

}

D
E

LA
Y

ch
oo

se
_h

ot
el

(n
or

m
al

(4
00

00
,1

50
00

))
T

ra
ve

l_
ag

en
cy

.
su

bm
it_

ac
co

m
m

od
at

io
n_

ch
oi

ce

su
bm

it_
ac

co
m

m
od

at
io

n_
ch

oi
ce

{h
er

e:
 ti

m
e

un
it

=
 1

 m
s}

U
S

E
_C

A
S

E
_E

X
P

Fig. 1. Example of a ProC/B model

212 F. Bause et al.

request_form

()

submit_form
(travel_info:INT)

()

Travel_Agency_Server.
request

generate_web_page
(100.0)

Airline1.
request_flight_list

request_flight_list
(data.travel_info)

Travel_Agency_Server.
request

generate_web_page
(100.0)

submit_flight

()

Travel_Agency_Server.
request

search_for_airlines
(500.0)

Airline1.
put_flight_on_hold

put_flight_on_hold

Airline2.
put_flight_on_hold

put_flight_on_hold

Airline3.
put_flight_on_hold

put_flight_on_hold

Travel_Agency_Server.
request

search_for_hotels
(200.0)

Hotel_Company1.
request_accommodation_options

request_accommodation_options

Travel_Agency_Server.
request

search_payment_services
(300.0)

Travel_Agency_Server.
request

generate_web_page
(200.0)

submit_accommodation_choice

()
CreditCard_Service.

request_payment

request_payment

Hotel_Company1.
book_room

book_room

Hotel_Company2.
book_room

book_room

Hotel_Company3.
book_room

book_room

Airline1.
confirm_reservation

confirm_reservation

Airline2.
confirm_reservation

confirm_reservation

Airline3.
confirm_reservation

confirm_reservation

CreditCard_Service.
charge_fee

charge_fee

Travel_Agency_Server.
request

generate_web_page
(10.0)

Airline1

confirm_reservation

put_flight_on_hold

request_flight_list
(travel_info:INT)

CreditCard_Service

charge_fee

request_payment

Hotel_Company1

book_room

request_accommodation_options

Airline3

confirm_reservation

put_flight_on_hold

request_flight_list
(travel_info:INT)

Airline2

confirm_reservation

put_flight_on_hold

request_flight_list
(travel_info:INT)

Hotel_Company3

book_room

request_accommodation_options

Hotel_Company2

book_room

request_accommodation_options

Travel_Agency_Server

DIS=PS

request
(amount:REAL)

Airline2.
request_flight_list

request_flight_list
(data.travel_info)

Airline3.
request_flight_list

request_flight_list
(data.travel_info)

Hotel_Company2.
request_accommodation_options

request_accommodation_options

Hotel_Company3.
request_accommodation_options

request_accommodation_options

0.3

0.3

ELSE

0.3

0.3

ELSE

0.3

0.3

ELSE

Travel_agency

Fig. 2. FU Travel agency

within FU Travel agency. The shown model describes the customer’s activities
at an abstract level and we only specified those parameters, which we thought
of being relevant for performance evaluation. E.g., responses of the travel agent
are not modelled, since we assume that replies are of similar size; the customer’s
request is classified into 3 categories (attribute travel info) and initially set
by random (see “randint(1,3):INT”) and the customer activities at her local
PC (filling out the form, choosing a flight etc.) are modelled by delays with a
randomly chosen duration. Customers determine the load of the model specified

A Framework for Simulation Models of Service-Oriented Architectures 213

HIT
− Simulation
− QN Analysis

− Modelling
− Measure Specification
− Result Visualisation

ProC/B GUI

 & Measures & Measures & Measures

ProC/B Model

− Simulation
− Animation

APNN Toolbox
− CTMC Analysis
− Invariant Analysis
− Model Checking

QN Model GSPN Model

OMNeT++

Simulation Model

Traviando OPEDo
− numerical analysis

− optimisation
of CTMCs

− trace
visualisation

 & Measures

Transformer

Fig. 3. ProC/B toolset

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08 7e+08 8e+08 9e+08 1e+09

re
sp

on
se

 ti
m

e

model time

Avg. response time per customer request

seed : INTEGER = 13;

 response time: mean in [0,t]
90% confidence

 interval in [0,t]

Fig. 4. A possible simulation result

214 F. Bause et al.

according to exponentially distributed inter-arrival times with a mean of 3000
time units and might arrive single or in bulks of at most 3 (see “randint(1,3)”).
We consider a time unit to be equal to 1 ms in our example.

The internals of FU Travel agency are shown in Fig. 2. Each service is de-
scribed by a PC and several other FUs offer services being used in activities of
the travel agency. All FUs except FU Travel Agency Server are user-defined
FUs and their internals can be specified analogously to FU Travel agency (cf.
Fig. 6). It is a matter of choice whether these FUs are modelled within or on
the same level as FU Travel agency using ProC/B ’s capability of importing
services (cf. [2]). The hierarchical model description ends at standard FUs which
have a pre-defined behaviour, like Travel Agency Server. ProC/B offers two
kinds of standard FUs: servers act as traditional queues, and so-called counters
support the manipulation of passive resources.

It is possible to specify ProC/B models precisely enough to obtain a simula-
tion model for a performance analysis. In the course of the CRC 559 we developed
a toolset which provides a graphical user interface to specify ProC/B models and
transformer modules which map ProC/B models to the input languages of exist-
ing analysis tools, so that ProC/B models can be analysed automatically (cf. [2]
and Fig. 3). Fig. 4 shows a possible result from a simulation run. The diagram
shows the average response time of a customer request to FU Travel agency.
The ProC/B toolset also offers the possibility to get similar results for each spe-
cific activity of PC customer. We do not want to go into those details of the
model now and refer the reader to [2]. Instead we consider refinements of ProC/B
and the model in order to capture the system’s behaviour more accurately.

In many practically relevant applications timers and timeouts are used, e.g.
in operating systems or network protocols. Timers can also be used to model
system characteristics on higher levels, like e.g. for the behaviour specification
of a customer. Up to now timeouts were not considered in process chain models.
Recently we extended ProC/B by a timer construct as follows.

In Fig. 5 we use the specification of timeouts for modelling the impatience
of Web customers. When requesting a form calling service request form of FU
Travel agency, a customer sets his individual timer with a timeout value of
3000 time units. At latest after 3000 time units he will receive a boolean value
stored here in variable data.in time as the answer. The (informal) semantics
of this syntactical construct is that at the same time as the timer has been set
the specified service is called. If the service call returns on time, the timer is
deleted and the process proceeds with a true boolean value for the specified
variable, i.e. with data.in time = TRUE in the example. If the timer expires
before the service call returns, the specified variable is set to FALSE and the
process proceeds immediately. Other possibly user-defined result values are set
to default values. A service call returning after the timer has elapsed will be
ignored. In the example, the behaviour of a customer depends on the value of
the variable data.in time and possible other result values of the service call. In
Fig. 5 an expired timer implies counting this incident in the user-defined result
measure lost customers and it implies the termination of the customer process.

A Framework for Simulation Models of Service-Oriented Architectures 215

E
V

E
R

Y
 n

eg
ex

p(
1/

30
00

.0
)

ra
nd

in
t(

1,
3)

(r
an

di
nt

(1
,3

):
IN

T
)

C
us

to
m

er
(t

ra
ve

l_
in

fo
:IN

T
)

(O
K

:B
O

O
L,

in
_t

im
e:

B
O

O
L)

{r
eq

ue
st

 a
va

ila
bi

lit
ie

s
ab

ou
t s

om
e

tr
av

el
 d

at
es

}

T
ra

ve
l_

ag
en

cy
.

re
qu

es
t_

fo
rm

s:
 1

, r
: 1

50

tim
eo

ut
: 3

00
0

--
>

 d
at

a.
in

_t
im

e

re
qu

es
t_

fo
rm

D
E

LA
Y

fil
l_

ou
t_

fo
rm

(n
or

m
al

(3
00

00
,1

00
00

))
T

ra
ve

l_
ag

en
cy

.
su

bm
it_

fo
rm

s:
 2

, r
: r

an
di

nt
(1

10
,1

50
)

tim
eo

ut
: 6

00
0

--
>

 d
at

a.
in

_t
im

e

su
bm

it_
fo

rm
(d

at
a.

tr
av

el
_i

nf
o)

--
>

(d
at

a.
O

K
)

T
ra

ve
l_

ag
en

cy

re
qu

es
t_

fo
rm

su
bm

it_
ac

co
m

m
od

at
io

n_
ch

oi
ce

su
bm

it_
fli

gh
t

--
>

(S
U

C
C

E
S

S
:B

O
O

L)

su
bm

it_
fo

rm
(t

ra
ve

l_
in

fo
:IN

T
)-

->
(S

U
C

C
E

S
S

:B
O

O
L)

D
E

LA
Y

ch
oo

se
_f

lig
ht

(n
or

m
al

(2
00

00
,5

00
0)

)

{u
se

r
ch

oo
se

s
fli

gh
t a

nd
 lo

ok
s

fo
r

ho
te

ls
}

T
ra

ve
l_

ag
en

cy
.

su
bm

it_
fli

gh
t

s:
 3

, r
: r

an
di

nt
(1

10
, 1

50
)

tim
eo

ut
: 1

00
00

 -
->

 d
at

a.
in

_t
im

e

su
bm

it_
fli

gh
t

--
>

(d
at

a.
O

K
)

{u
se

r
bo

ok
s

ho
te

l r
oo

m
 a

nd
 fl

ig
ht

}

D
E

LA
Y

ch
oo

se
_h

ot
el

(n
or

m
al

(4
00

00
,1

50
00

))
T

ra
ve

l_
ag

en
cy

.
su

bm
it_

ac
co

m
m

od
at

io
n_

ch
oi

ce
s:

 3
, r

: 1
00

su
bm

it_
ac

co
m

m
od

at
io

n_
ch

oi
ce

{h
er

e:
 ti

m
e

un
it

=
 1

 m
s}

U
P

D
A

T
E

co
un

t_
lo

st
_c

us
to

m
er

(lo
st

_c
us

to
m

er
s

B
Y

 1
)

R
E

W
A

R
D

 lo
st

_c
us

to
m

er
s:

 C
O

U
N

T

U
P

D
A

T
E

co
un

t_
lo

st
_c

us
to

m
er

(lo
st

_c
us

to
m

er
s

B
Y

 1
)

U
P

D
A

T
E

co
un

t_
lo

st
_c

us
to

m
er

(lo
st

_c
us

to
m

er
s

B
Y

 1
)

da
ta

.in
_t

im
e

E
LS

E

E
LS

E

(d
at

a.
O

K
 A

N
D

 d
at

a.
in

_t
im

e)

E
LS

E

(d
at

a.
O

K
 A

N
D

 d
at

a.
in

_t
im

e)

U
S

E
_C

A
S

E
_E

X
P

Fig. 5. ProC/B model with timeout definitions

216 F. Bause et al.

re
qu

es
t_

fli
gh

t_
lis

t
(t

ra
ve

l_
in

fo
:IN

T
)

(C
A

N
C

E
L_

A
LL

O
W

E
D

:B
O

O
L=

F
A

LS
E

)

pu
t_

fli
gh

t_
on

_h
ol

d

()

co
nf

irm
_r

es
er

va
tio

n

()

IT
_E

qu
ip

m
en

t_
of

_A
irl

in
e.

do
_t

as
k

pr
oc

es
s_

re
qu

es
t

(4
)

IT
_E

qu
ip

m
en

t_
of

_A
irl

in
e.

do
_t

as
k

do
_f

in
al

_r
es

er
va

tio
n_

an
d_

co
nf

irm
(5

)

IT
_E

qu
ip

m
en

t_
of

_A
irl

in
e.

do
_t

as
k

se
ar

ch
_f

or
_f

lig
ht

s
(d

at
a.

tr
av

el
_i

nf
o*

10
)

C
O

D
E

S
et

 C
A

N
C

E
L_

A
LL

O
W

E
D

(d
at

a.
C

A
N

C
E

L_
A

LL
O

W
E

D
 :=

 T
R

U
E

;)
IT

_E
qu

ip
m

en
t_

of
_A

irl
in

e.
do

_t
as

k

se
le

ct
_t

hr
ee

_c
he

ap
es

t
(2

)
IT

_E
qu

ip
m

en
t_

of
_A

irl
in

e.
do

_t
as

k

ge
ne

ra
te

_r
es

ul
t_

lis
t

(3
)

IT
_E

qu
ip

m
en

t_
of

_A
irl

in
e

do
_t

as
k

(t
as

k_
ty

pe
:IN

T
)

A
irl

in
e1

Fig. 6. Supporting cancellation of “expired” processes

A Framework for Simulation Models of Service-Oriented Architectures 217

Normally, an initiated service call will be executed until it ends, as specified
by the PC. The user can have influence on this behaviour by setting the pre-
defined process local variable CANCEL ALLOWED, see Fig. 6. After executing the
activity specified by a PCE, a process checks whether the corresponding timer, if
available, has expired and whether its boolean variable CANCEL ALLOWED is true.
If both conditions are met, the process terminates immediately. This construct
allows also the modelling of lower level network mechanisms at an abstract level
including the saving of resource capacities.

In Sect. 5 we will revisit this example and show some more details.
As indicated by Fig. 3 we also integrated a mapping to OMNeT++ [3] into

the ProC/B toolset. This does not only allow us to benefit from the features of
a modern object-oriented simulator but also offers the possibility to use existing
OMNeT++ frameworks for modelling communication aspects. Sect. 4 describes
the use of the INET framework for considering network aspects in performance
models of service-oriented architectures.

3 Modelling Networks and Protocol Stacks

OMNeT++ [6] is a public-source discrete event simulation environment, that
has been developed and used extensively for the modelling of communication
protocols. Additionally, it has been proved suitable in other application areas
as well (cf. [3]). OMNeT++ models are composed of modules which can be
simple or compound. The module interfaces and their relationships are described
with OMNeT++’s NED language. While simple modules are implemented as
a combination of NED files and C++ classes, compound modules, that may
consist of other simple and compound modules, are only described by NED files.
Modules are connected via gates and can communicate by messages either sent
along connections or sent directly to the destination module.

There are several simulation model frameworks available for OMNeT++ es-
pecially for building network models. One of these frameworks is the INET
Framework including (among others) protocol implementations of IPv4, IPv6,
TCP, UDP, Ethernet and 802.11. These protocols are represented by simple
modules and can be combined to compound modules to form network hosts.
Several assembled compound modules that implement routers, switches etc. are
already included. Additionally, modules for network interfaces, routing tables or
the auto-configuration of a network are provided. Some of those modules are
part of almost every host like RoutingTable, which can be used for querying,
adding or deleting routes, or InterfaceTable, which contains a list of all inter-
faces of a host. Other modules are only instantiated once, like for example the
FlatNetworkConfigurator, that can be used to assign IP addresses to hosts.

The communication between network layers is realized by messages between
the modules representing those layers. An upper layer protocol may send a
message representing a data packet to the next lower layer (linked with some

218 F. Bause et al.

additional information to determine the destination of the packet like an IP
address), which will encapsulate and forward the data. Receiving packets works
in a similar way.

In the next section we describe how ProC/B and the INET Framework can
be combined to simulate service-oriented architectures. This approach uses an
INET model of the network topology, while a ProC/B model is used to specify
the activities and the process flow.

4 Combining Both Worlds

In ProC/B calls from PCEs to FUs are instantaneous. No model time is con-
sumed between the start of a service call and the start of its execution. In the
ProC/B paradigm this is a reasonable assumption, since process chains and
function units are used to separate behaviour from structure descriptions and it
is implicitly assumed that services run on the same hardware or communication
needs negligible time. In the Web services example of Sect. 2 some PCEs repre-
sent access to some remote component, e.g., the query of airline databases for
availability of passenger tickets. Typically, a service call to a remote component
requires apart from the processing time at the remote component also time for
communication which, depending on the communication medium and the dis-
tance, might take a large percentage of the overall time and in particular can
have some jitter. In Fig. 2 all calls to remote sites are indicated in blue.

Communication between remote sides is usually realized via network com-
ponents that can be adequately modelled using the modules from the INET
framework. Typical INET models represent some network and specify the load
generation in host modules employing different pre-defined modules of the INET
framework. The main idea to combine ProC/B and INET is to define a mapping
between all FUs and some hosts of an INET model. PCEs are implicitly related
to the hosts of their surrounding constructed FU. The mapping need neither
be injective nor surjective. Whenever a PCE specified within an FU A calls a
service of an FU B mapped to a different host, messages between the two hosts
associated with A and B are exchanged in the INET model. E.g., one can define
that all activities of FU Travel agency are performed on host 1, those of FU
Airline1 on host 2, those of FU CreditCard Service on host 3 etc. (cf. Fig. 7)
or one can define a mapping onto 3 hosts as we have done in Sect. 5. Surely,
the INET model has to be prepared appropriately in order to be simulated in
conjunction with the ProC/B model. In principle this means that we keep two
models, the ProC/B model and the INET model. Both are enhanced by some
constructs to realize the combination into a single simulation model.

In order to account for network traffic, we enhanced the ProC/B description
by some information on the amount of data, which needs to be sent. Fig. 8
shows a part of FU Travel agency with additional attributes for PCEs doing
a remote service call. Since a service call in ProC/B has two directions, calling
the service and receiving the result, also two attributes are specified, one for the
send direction (s:) indicating the amount of data being sent to the FU/host and

A Framework for Simulation Models of Service-Oriented Architectures 219

host 1

host 3

host 2

USE_CASE_EXP

Travel_agency

Airline1

IT_Equipment_of_Airline

IT_equipment

CreditCard_Service

Hotel_Company1

Server_at_Hotel

Airline3

IT_Equipment_of_Airline

IT_equipment

Airline2

IT_Equipment_of_Airline

IT_equipment

Hotel_Company3

Server_at_Hotel

Hotel_Company2

Server_at_Hotel

Travel_Agency_Server

host 8

Fig. 7. Mapping FUs to hosts

one for the receive direction (r:) indicating the amount of data being sent back
from the FU/host. As mentioned, whenever a remote service call is initiated a
message from the ProC/B part is sent to the INET part of the OMNeT++ model
and received by modified host modules. They replace similar host models in the
INET model to interface with the ProC/B model part and lack the random
traffic generators for TCP and UDP. Instead they include a new module on
application layer called ProCBApp which interfaces the process model and the
INET network part by translating messages with set s: or r: parameters into
TCP data transmissions with requested bytelength.

The TCP transmission delay for a ProC/B remote service call is determined
as follows: The initial ProC/B -message indicating a PCE → FU call is suspended
at the PCE, instead a message is sent to the corresponding modified host module
(see red arrows in Fig. 9). The host will initiate a TCP connection and transmit
the amount of data specified for the request. The called peer will close the
connection after the transmission. When the connection reset packet arrives at

220 F. Bause et al.

Fig. 8. Part of FU Travel agency with send/receive attributes (here in KB) for INET

A Framework for Simulation Models of Service-Oriented Architectures 221

transformed ProC/B-model
OMNeT++-Representation of

INET model

host

Fig. 9. Message flow to an FU when calling a service

the first host, the simulation clock has progressed for the amount of time a
data transmission including connection handling would take. A signal message
is directly sent back to the PCE and the waiting call is released to continue
to the target FU in zero time. Similarly the result of a service call is returned:
After the last activity of a service call has been performed, a message is sent
to the host module of the corresponding FU and the message is transferred to
the INET part of the OMNeT++ model. Once the message arrived back at the
originally sending host, it is sent to the calling PCE, so that activities within
the ProC/B part of the model can proceed.

Holding the service call message back and using a replacement message in the
INET model has two important advantages: First, the INET does not transmit
information, it transmits the bytelength of the information. Transmitting the
original service call with INET’s simulated IP stack would require more complex
input or output parameters at the service call. Second, there is no interference

222 F. Bause et al.

with process statistics, since a ProC/B process is still either in the PCE or in the
called FU. By suspending process messages in the domain of a ProC/B element
for the time of transmission statistics are kept consistent.

By including the INET framework in ProC/B models service calls can be
delayed by realistic values resulting from connection speed and network topology
given by the INET model. More than that, even network bottlenecks or message
losses due to overload conditions become relevant for FU calls if there are many
calls at the same time. As described above, each FU is bound to a network
host. In contrast to network elements, FUs are organised hierarchically and can
include each other as components. A call in FU A to an included FU B thus
induces a network communication between host X and Y of the INET model,
provided the FUs have been mapped to the hosts X and Y. Rather than sending
messages from PCEs to FUs as service calls, a TCP transmission is prepared
in host X and given to the INET part of the model. The simulated IP-Stack
will resolve the target address, establish a connection to the target host Y and
transmit the message. All network activities consume some time, typically in
range of milliseconds. When the called Function Unit has finished the service
call, the network is used again to signal the end of service and again some
network latency occurs.

Following this approach, the use of INET models as network topology for
ProC/B is supported. This allows the modeller to work with a fine-grained
network description to evaluate effects of network hardware and bottlenecks to
application processes specified as ProC/B activities. Currently the INET model
has to be adjusted by hand in order to be used together with the OMNeT++
translation of the ProC/B model. But we intend to automate the combination
of ProC/B and INET in such a form that for INET models with appropriate
host definitions only the mapping of FUs to hosts has to be specified.

5 Application Example

In the following we present the model from Sect. 2 in more detail and show
some additional modelling constructs that enable the use of OMNeT++ and the
INET framework for ProC/B models.

As already mentioned, our model addresses a Web service usage scenario
described informally in [15]. It consists of several FUs representing servers that
offer Web services and PCs that are used to model the behaviour of those Web
services and the behaviour of customers accessing the travel agency Web service.

To reduce complexity we did not include some directory service like UDDI in
our model and assume that the Web service discovery has already taken place
beforehand. However, from a modelling point of view also those services could
be integrated.

In this scenario Web services are offered by a travel agency, three airlines,
three hotel companies and a credit card service. The FU Travel agency offers
four services that can be used by the PC Customer to request the availability of
hotel rooms and flights and to book them eventually. The PC Customer and the

A Framework for Simulation Models of Service-Oriented Architectures 223

FU Travel agency are shown in Fig. 5. The behaviour of the PC has already
been described in Sect. 2. For the use of the model with OMNeT++ and the
INET framework additional attributes can be specified for service calls that com-
prise messages sent over a network. We use the timeout mechanism described in
Sect. 2 to model the customer behaviour. We assume that a customer will wait
3 seconds for the input form of the travel agency to show up. In later steps of
the process he or she accepts to wait 6 and 10 seconds for the availability of
his travel dates and the list of hotels, respectively. Additionally, the modeller
can specify the amount of data that has to be transmitted and that will be re-
ceived when sending over a network. These amounts may be a fixed number or
drawn from a probability distribution. For example for the call of PC Customer
to the service submit form of Travel agency a fixed number of 2 KB has to
be transmitted. The data returned may vary between 110 and 150 KB, since in
reality it will depend on the number of available flights that the travel agency
has found. The amounts of data are summarised in table 1. At this abstract level
the modeller does not have to specify the actual contents of the messages, only
a message size is required to model the delay for sending the message over a
network. In fact the messages sent in this model may even be of different types:
While the communication between the customer and the travel agency is made
up of simple HTTP requests and responses for accessing several websites, the
travel agency and the airlines exchange SOAP messages. However, when calling
a service additional parameters may be passed, so that activities of that ser-
vice may depend on these parameters. While the network latency only depends
on the message size and not on the actual content, additional delay may be
caused by processing the messages, e.g. marshalling and unmarshalling of XML-
based messages may take up some CPU resources. The latter delay has been
omitted in our example, though it can easily be modeled by additional servers,
that are accessed whenever a message needs to be processed.

The inner view of the FU Travel agency is shown in Fig. 2. The FU has
been extended by some additional modelling constructs for the simulation with
OMNeT++ as one can see in Fig. 8 and as described in the following.

Each of the four services is modelled by a PC. Additionally, it contains further
FUs for hotel companies, airlines and the credit card service and a server that
is accessed when generating the websites that are delivered to the customer.

The simplest service, request form, will just generate the initial website for a
customer by an access to the server. Service submit form (see Fig. 8) is invoked
after a customer has entered date and destination of his travel and returns a list
of possible flights to the customer. It makes use of the variable CANCEL ALLOWED
that has already been explained in Sect. 2, and thus the PC can be interrupted
when a timeout has occurred. The service looks up eligible airlines in its local
directory, sends messages to the airlines and receives flight dates afterwards. We
assume that Airline1 is a large airline and returns a longer list of flights than the
other airlines as one can see from table 1. All calls to the airlines make use of the
timeout mechanism again. If all three airlines fail to deliver any flight information
within 3 seconds the travel agency cannot serve the customer’s request and will

224 F. Bause et al.

Table 1. Amount of data sent between different hosts of the model

Source Destination Data (KB)
send receive

Customer

Travel agency.request form 1 150
Travel agency.submit form 2 110-150
Travel agency.submit flight 3 110-150
Travel agency.

submit accommodation choice 3 100

Travel agency. Airline1.request flight list 5 30-40
submit form Airline2.request flight list 5 20-30

Airline3.request flight list 5 10-20

Airline1.put flight on hold 2 1
Airline2.put flight on hold 2 1
Airline3.put flight on hold 2 1

Travel agency. Hotel Company1.
submit flight request accommodation options 5 10

Hotel Company2.
request accommodation options 5 10

Hotel Company3.
request accommodation options 5 10

CreditCard Service.request payment 2 3
Hotel Company1.book room 2 2
Hotel Company2.book room 2 2

Travel agency. Hotel Company3.book room 2 2
submit accommodation choice Airline1.confirm reservation 2 2

Airline2.confirm reservation 2 2
Airline3.confirm reservation 2 2
CreditCard Service.charge fee 2 2

return the boolean variable SUCCESS set to false finally resulting in a loss of
the customer. If at least one of the airlines returns the flight options in time this
variable is set to true and the PC Customer will continue with the next step.
The service submit flight is invoked after a customer has chosen his flight.
The service needs to contact an airline to put the flight on hold and request
accommodation options from the hotel companies. The former is done by sending
a message to one of the airlines, while the latter is modelled in a similar manner
as the compilation of possible flights in the service submit form. First the hotel
companies are looked up in a local database and after that messages are sent
to them (again using the timeout mechanism). For the final step in the booking
process the service submit accommodation choice is invoked. This service first
contacts the credit card service to negotiate payment options. After that a hotel
company is contacted again to book a specific hotel, the reservation of the flight is
confirmed and finally the credit card service is contacted again to charge the fee.
The booking process is completed after a website is generated for the customer
summarising the travel plan.

A Framework for Simulation Models of Service-Oriented Architectures 225

Modelling of the FUs for the airlines, hotel companies and the credit card ser-
vice is less complex, since no further remote services are invoked from there. Each
of the FUs for the airlines contains a server with discipline processor sharing,
that is used for modelling the IT equipment of the airline. Most of the tasks like
searching for flights, generating result lists and reserving flights are performed
by an access to the server. The three airlines only differ in the capacity of the
server. The inner view of one of the FUs for the airlines is shown in Fig. 6. A
similar situation holds for the FUs that represent the hotel companies: Their
services are modelled by one or more accesses to processor sharing servers (that
have a different speed for each of the hotel companies) as well. Finally requests
to the services of the credit card company are only delayed for an uniformly
distributed duration.

As already mentioned, customers might leave the website of the travel agency
when the time they are willing to wait for a response is exceeded. Addition-
ally, the results from some hotel companies and airlines might be ignored when
the travel agency service assembles the result list, if those results are not de-
livered before a timeout has occurred. ProC/B offers the possibility to specify
measurements [2], called rewards, at any FU. When simulating OMNeT++ will
estimate results for those rewards [3]. Apart from standard rewards like through-
put, response time or the population, ProC/B allows for the specification of
user-defined rewards. As one can see in Fig. 5 a reward has been defined to esti-
mate the mean number of lost customers. Further rewards are used to estimate
the mean number of hotel companies and airlines that did not respond in time
(see Fig. 8).

For simulation the ProC/B model has been combined with the FlatNet model
(cf. Fig. 9), which is one of the standard models that are part of the INET
Framework. Next to the host for customers, travel agencies and airlines share
a server in our mapping. Hotel companies where separated from the booking
process to a dedicated server. Locating services to different machines in the
INET network model requires data communication for each service call between
PCEs and distant FUs.

Results of some simulation runs are shown in table 2. Two model parameters
are varied here: inter-arrival times of new customers and the transmission delay
on cable lines between two routers of the INET model. Remember that customers
might arrive in bulks.

The first value of each block is the number of lost customers per second from
which we calculated the relative loss. The effects of intense customer arrivals
are clearly visible in increased response times of the travel agencies booking sys-
tem resulting in higher customer losses. Surely, the reason is that the database
systems inside the model are slowed down by the increasing number of simul-
taneous requests. If communication network latencies are increased, many user
requests that have been in time before become late. The two rightmost columns
indicate the line between significant loss of customers and the complete failure
of service.

226 F. Bause et al.

Table 2. Lost customers per second (10000 seconds model time)

mean inter-arrival
time (sec.) network delay 0.001s 0.01s 0.05s 0.075s 0.1s

4

lost customers per sec. 0.0650 0.0687 0.1318 0.1879 0.4976
standard deviation 0.3517 0.3560 0.4982 0.5538 0.7371
confidence 90% 20.00% 13.21% 16.63% 11,27% 9.76%
relative loss 13.0% 13.7% 26.4% 37.6% 99.5%

3

lost customers per sec. 0.2007 0.1965 0.2768 0.3754 0.6708
standard deviation 0.6110 0.6040 0.7003 0.7922 0.8965
confidence 90% 10.25% 6.30% 10.27% 8.39% 4.47%
relative loss 30.1% 29.5% 41.5% 56.3% 100%

2

lost customers per sec. 0.5903 0.6245 0.6795 0.7432 0.9856
standard deviation 1.0100 1.0693 1.1395 1.1632 1.2273
confidence 90% 10.00% 10.88% 5.19% 10.24% 3.69%
relative loss 59.0% 62.5% 68.0% 74.3% 98.6%

6 Conclusions

In this paper we presented an approach supporting modelling of service-oriented
architectures also accounting for lower level network operations. Web services
and their orchestration are described on a higher level using a process chain-like
description (ProC/B) and lower network activities are modelled using (possibly
available models of) the INET framework. As a matter of course the combination
of ProC/B models for Web services and INET models for networks seems not
always appropriate due to the different time scales, but the presented approach
gives at least the principal possibility to validate this assumption.

Currently we have to adjust INET models by hand for being used together
with ProC/B models, but we head for an automated support for appropriate
INET models.

So far only synchronous communication has been considered. Future research
is directed to support also asynchronous communication by extension of ProC/B .

References

1. Balsamo, S., Marzolla, M.: Performance evaluation of UML software architectures
with multiclass Queueing Network models. In: WOSP 2005: Proceedings of the 5th
international workshop on Software and performance, pp. 37–42. ACM, New York
(2005)

2. Bause, F., Beilner, H., Fischer, M., Kemper, P., Völker, M.: The ProC/B Toolset
for the Modelling and Analysis of Process Chains. In: Field, T., Harrison, P.G.,
Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 51–70. Springer,
Heidelberg (2002)

3. Bause, F., Buchholz, P., Kriege, J., Vastag, S.: Simulating Process Chain Models
with OMNeT++. In: Proc. of 1st International Conference on Simulation Tools
and Techniques for Communications, Networks and Systems (SIMUTools) (2008)

A Framework for Simulation Models of Service-Oriented Architectures 227

4. Bause, F., Buchholz, P., Tepper, C.: The ProC/B-approach: From Informal De-
scriptions to Formal Models. In: ISoLA - 1st International Symposium on Lever-
aging Applications of Formal Method, Paphos, Cyprus (2004)

5. Collaborative Research Center 559 Modelling of Large Logistics Networks,
http://www.sfb559.uni-dortmund.de

6. Hornig, R., Varga, A.: An Overview of the OMNeT++ Simulation Environment.
In: Proc. of 1st International Conference on Simulation Tools and Techniques for
Communications, Networks and Systems (SIMUTools) (2008)

7. Kuhn, A.: Prozessketten in der Logistik - Entwicklungstrends und Umset-
zungsstrategien. Verlag Praxiswissen, Dortmund (1995)

8. Kuhn, A.: Prozesskettenmanagement - Erfolgsbeispiele aus der Praxis. Verlag Prax-
iswissen, Dortmund (1999)

9. Menascé, D.A., Almeida, V.A.F., Dowdy, L.W.: Performance by Design. Prentice
Hall, Englewood Cliffs (2004)

10. Menascé, D.A., Ruan, H., Gomaa, H.: QoS Management in Service-oriented Archi-
tectures. Perform. Eval. 64(7-8), 646–663 (2007)

11. Muthusamy, V., Jacobsen, H.A., Coulthard, P., Chan, A., Waterhouse, J., Litani,
E.: SLA-driven Business Process Management in SOA. In: Lyons, K.A., Couturier,
C. (eds.) CASCON, pp. 264–267. IBM (2007)

12. OMNeT++ Community Side, http://www.omnetpp.org/
13. Rud, D., Schmietendorf, A., Dumke, R.R.: Performance Modeling of WS-BPEL-

Based Web Service Compositions. In: SCW, pp. 140–147. IEEE Computer Society,
Los Alamitos (2006)

14. Tsai, W.T., Cao, Z., Wei, X., Paul, R., Huang, Q., Sun, X.: Modeling and Simula-
tion in Service-Oriented Software Development. Simulation 83(1), 7–32 (2007)

15. Web Services Architecture Usage Scenarios (2004), http://www.w3.org/TR/2004/
NOTE-ws-arch-scenarios-20040211/

16. Woodside, C.M.: From Annotated Software Designs (UML SPT/MARTE) to
Model Formalisms. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486,
pp. 429–467. Springer, Heidelberg (2007)

http://www.sfb559.uni-dortmund.de
http://www.omnetpp.org/
http://www.w3.org/TR/2004/
NOTE-ws-arch-scenarios-20040211/

S. Kounev, I. Gorton, and K. Sachs (Eds.): SIPEW 2008, LNCS 5119, pp. 228–246, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Model-Driven Performability Analysis
of Composite Web Services

Paolo Bocciarelli and Andrea D’Ambrogio

Dept. Computer Science, Systems and Production
University of Roma “Tor Vergata”

Roma, Italy
{bocciarelli,dambro}@info.uniroma2.it

Abstract. Web services are the building blocks of the emerging computing
paradigm based on service-oriented architectures (SOAs). A web service is a
self-describing, open component that supports rapid composition of distributed
applications. In a SOA context, service providers are strategically interested
both to predict and describe the QoS of the offered services. This paper
introduces a model-driven approach to automatically predict and describe the
QoS of composite web services specified by use of the Business Process
Execution Language for Web Services. The paper is founded on a lightweight
QoS-oriented extension of the WSDL and specifically addresses the QoS in
terms of the performability attribute, which defines a combined measure of
performance and reliability. The proposed approach is illustrated by use of an
example application that shows how the performability analysis may lead to
predictions that do not correspond to those obtained by approaches that only
consider the performance attribute.

Keywords: model-driven development, composite web services, perform-
ability, performance, reliability.

1 Introduction

Service-oriented computing is becoming the prominent paradigm for distributed
computing and e-commerce. Web services are the building blocks for the application
of service-oriented computing on the Web [1]. A web service is a self-describing,
open component that supports rapid composition of distributed applications. In a
service-oriented architecture (SOA), the service provider creates a service description
by use of WSDL (Web Service Description Language) and publishes it to one or more
discovery registries (such as UDDI), so that service consumers can find the service
using a wide variety of search criteria and then use the WSDL description to develop
or configure a client that will interact with the service.

A WSDL description is an XML document that contains all the information about
service capabilities and invocation mechanisms [2]. Unfortunately, a WSDL
document only addresses the functional aspects of a web service without containing
any useful description of non-functional or quality of service (QoS) characteristics.

 Model-Driven Performability Analysis of Composite Web Services 229

Different web services may provide similar functionality, but with distinct quality of
service properties. In the selection of a web service, it is important to consider both
functional and QoS properties in order to fully satisfy the needs of a service consumer
[3][4].

This is even more important when dealing with composite web services, or
services resulting from the composition of a set of services in execution on networked
server hosts. In a composite web service the component services cooperate to execute
a process that defines the interaction workflow. The service-oriented architecture
provides the necessary support for the consolidation of multiple services into a single
composite service corresponding to the overall process.

Several terms have been proposed in literature to describe different styles of
collaboration between services, the most relevant ones being orchestration and
choreography [5].

These terms represent two different patterns of interactions between component
services. Orchestration represents the control from the perspective of one party,
which is the central authority (or coordinator) that controls the execution of
component web services. Orchestration refers to an executable process where a
coordinator is in charge of controlling the execution flow by explicitly invoking the
component services, which only respond to the coordinator requests. Choreography is
instead much more collaborative and does not rely on a central coordinator.

Several languages have been developed for web service composition [6].
Composite web services addressed in this paper refer to orchestration-based patterns
of interaction described by use of the BPEL (Business Process Execution Language
for Web Services) [7].

A BPEL process is an XML document typically generated with graphical design
tools by business analysts rather than programmers. A BPEL process is executed by
an orchestration engine that coordinates all of the activities and publishes the process
through a standard web service interface.

In a BPEL context, service providers are strategically interested both to describe
the QoS characteristics of the offered services, to better qualify their offer and gain a
significant advantage in the global marketplace, and to predict the level of QoS that
can be offered to service consumers when building composite web services that make
use of services managed by various service providers.

In this respect in our past work [8] we introduced a model-driven approach for
predicting at composition time, and managing at execution time, the performance of
composite services.

In such an approach, a composite service is initially described in terms of its
abstract model, i.e., a BPEL-oriented UML model representing the abstract workflow
of the process. The annotation of performance data onto BPEL-oriented UML models
is carried out by use of P-WSDL (Performance-enabled WSDL) [9], a lightweight
WSDL extension that is based on the UML Profile for Scheduling, Performance and
Time (SPT) [10] and that specifically addresses the performance-related attributes of
QoS. The performance-enabled UML description of the resulting composite service is
finally translated into a LQN (Layered Queueing Network) performance model.

In this paper we propose an extension of such an approach by introducing a
reliability prediction method that, combined with the performance-related one, gives
the basis for obtaining a joint prediction measured in terms of performability [11][12].

230 P. Bocciarelli and A. D’Ambrogio

The proposed approach is founded on Q-WSDL [13], a lightweight WSDL
extension for the description of QoS characteristics of a web service, such as
performance, reliability, availability or security. Q-WSDL is inspired both to the
aforementioned SPT Profile and to the UML Profile for Quality of Service and Fault
Tolerance (QoS Profile) [14].

The rest of paper is structured as follows. Section 0 briefly recalls the Q-WSDL
notation. Section 3 illustrates the proposed model-driven approach to predict the
performability of a composite service and finally Section 4 gives an example
application that shows how the performability analysis may lead to predictions that do
not correspond to those obtained by approaches that only consider the performance
attribute.

2 QoS-Enabled WSDL (Q-WSDL)

A WSDL description is an XML document that contains all the information about
service capabilities and invocation mechanisms. The capabilities are described in
terms of the operations of the service and the input and output messages for each
operation. What is needed to invoke the service is provided by a binding
implementation description that describes how messages are sent through the network
to reach the service location, where the hosting environment executes the service
implementation.

Unfortunately, a WSDL document only addresses the functional aspects of a web
service without containing any useful description of non-functional or QoS
characteristics. Different web services may provide similar functionality, but with
distinct quality of service properties. In the selection of a web service, it is important
to consider both functional and QoS properties in order to fully satisfy the needs of a
service consumer [15]. To this purpose a lightweight WSDL extension has been
proposed in [13] for the description of QoS characteristics of a web service, such as
performance, reliability, availability, security, etc.

The Q-WSDL metamodel, expressed in terms of MOF (Meta Object Facility) [16]
is shown in Figure 1. Such definitions are specified in the WSDL XML Schema,
which has been used to identify the classes and associations of the WSDL metamodel,
illustrated in the portion of Figure 1 bounded by a dashed line shape. Classes and
associations outside the dashed line shape in Figure 1 extend the WSDL metamodel to
include the description of the QoS characteristics of a web service. The complete set
of classes and association in Figure 1 (both inside and outside the dashed line shape)
identifies the Q-WSDL metamodel.

The extension is inspired both to the SPT Profile and to the QoS Profile, which
extend the UML metamodel to specify UML models with QoS-oriented annotations.
A complete description of Q-WSDL and the related MOF-based metamodel
transformation is out of the scope of this paper.

For a detailed description of the model-driven WSDL extension the reader is
referred to [13].

 Model-Driven Performability Analysis of Composite Web Services 231

+name

+targetNamespace

Definition

+name

Message

+name

Binding

+name

+location

Port

+name

Operation
+name

Part

+name

Service

+name

PortType

input

output

fault

*
0..* 1..*

1

1

1

1..*

1..*

1..*

1..*

1..*

0..1

0..1

0..1

1..*

1..*

1

+namespace

+location

Import

1..*

Types

0..1

is_located_on

is_acceded_by

+qualification

+isOffered

MessageEncryption

QoSCharacteristic

+value

+unit

+source

Protocol
+value

+unit

+source

KeyType

QoSDimension QoSDimension

+qualification

+isOffered

OperationDemand
+qualification

+isOffered

OperationLatency

+qualification

+isOffered

Network

+qualification

+isOffered

AccessControl

+qualification

+isOffered

Reliability
+qualification

+isOffered

Availability

+value

+unit = 'msec'

+type

+direction = 'decreasing'

+source

ServiceTime
+value

+unit = 'msec'

+type

+direction = 'decreasing'

+source

TurnAround
+value

+unit = 'requests/sec'

+type

+direction

+source

ArrivalRate

+value

+unit = 'Mbit/sec'

+type

+direction = 'increasing'

+source

BitRate
+value

+unit = 'msec'

+type

+direction = 'decreasing'

+source

Delay

+value

+unit = 'msec'

+type

+direction = 'decreasing'

+source

Jitter

+value

+unit = '%'

+type

+direction = 'decreasing'

+source

PacketLoss

+value

+unit = 'hours'

+type

+direction = 'decreasing'

+source

TimeToRepair
+value

+unit = 'hours'

+type

+direction = 'increasing'

+source

TimeBetweenFailure
+value

+unit = 'failures/year'

+type

+direction = 'decreasing'

+source

ExpFailures

+value

+unit

+source

Policy

QoSCharacteristic QoSCharacteristic

QoSCharacteristic

QoSCharacteristicQoSCharacteristic

QoSCharacteristic

QoSDimension QoSDimension
QoSDimension

QoSDimension QoSDimension

QoSDimension

QoSDimension

QoSDimension

QoSDimension

QoSDimension

QoSDimension

0..1 0..1 0..1

0..1

0..1

0..10..1

1 0..1

1 0..1 1

1 0..1

0..1

0..1

1

10..10..1

+value

+unit = '%'

+type

+direction = 'increasing'

+source

ExpAvailability

QoSDimension

1

QoSDimension

0..1

Fig. 1. Q-WSDL metamodel

3 Model-Driven Performability Prediction of Composite Services

The proposed approach to predict the performability of composite web services is
based on the one proposed in [8]. The approach, illustrated in Figure 2, is integrated
into a complete model-driven service composition process, which consists of
activities (squared rectangles) that take as input and/or produce as output XML
documents (rounded rectangles) representing various types of WSDL and BPEL
documents. Straight lines represent control flow, while dashed lines represent flow of
XML documents.

The use of model-driven approaches for predicting the performance of software
systems is also well recognized in literature (see, e.g., the contribution in [17], which
extends MDA to integrate performance validation).

232 P. Bocciarelli and A. D’Ambrogio

In our approach the composite service is initially specified in terms of its abstract
model, that is a workflow of abstract services, described by means of an UML
Activity Diagram (AD) [18]. A service discovery is then carried out in order to bind
the abstract services to a set of concrete services.

Fig. 2. QoS-enabled model-driven service composition process

Once a set of candidate services has been gathered for each abstract service, a
service selection activity is carried out to identify the configuration of the composite
service: each abstract service in the abstract model is mapped to a specific concrete
service, in order to satisfy both the functional and non-functional requirements of the
overall distributed application.

At this step, the abstract model is transformed into an executable model, consisting
of an AD annotated with binding and QoS data obtained from the Q-WSDL
descriptions of concrete services.

The use of QoS annotations to define the QoS parameters of component services
may prove hard to carry out in practical use cases, due to the fact that component
services are part of an “open world” that is typically not known to the orchestration
coordinator. To this purpose, Q-WSDL provides the capability to define QoS values
in terms of probability distributions, rather than of fixed, hard values, to take into
explicit account the significant variations that may occur to QoS parameters of
component web services [19].

A model-driven transformation is then carried out to obtain the QoS prediction
(specifically related to the performability attribute in the paper case), and then to
check if the evaluated configuration is able to satisfy the offered or negotiated level of
QoS.

Finally, the service interface of the BPEL process and the QoS predictions are used
to produce the Q-WSDL document of the composite web service, to be published in a
web service registry.

As above mentioned, the QoS prediction in Figure 2 is carried out in terms of
performability, which refers to the joint analysis of performance and reliability. The

 Model-Driven Performability Analysis of Composite Web Services 233

former is defined in terms of, e.g., throughput or service time, while the latter is
defined as the probability of failure-free operation of a web service for a specified
amount of time.

The following two sections describe the model-driven methods for performance
and reliability prediction. Then the approach that combines the two methods into a
performability prediction method is illustrated.

3.1 Performance Prediction

The performance prediction is carried out by first translating the annotated AD
representing the BPEL executable process into a LQN model and then by solving
such a model in order to obtain the performance indices of the composite web service,
such as throughput, utilization, or response time. The use of UML to LQN model
transformations for predicting the performance of software systems has been widely
investigated, and several contributions are available in literature [20][21][22].

The AD to LQN model transformation, described in [8], is specified by use of a
pattern-based approach that describes how basic BPEL structures are transformed into
the corresponding LQN structures. In this section we briefly recall the rationale of
such a transformation.

The main element of a BPEL process is called activity. An activity is either
primitive or structured. The main primitive types are: invoke, to invoke an operation
of a web service described in WSDL, receive, to wait for a message from an external
source and reply, to reply to an external source. The main structured activities are:
sequence, to define an execution order, flow, for parallel execution, switch, for
conditional executions and while, for looping.

Additional BPEL constructs, such as pick, wait, repeatUntil, etc., are not
considered in this paper, but can be easily addressed by a straightforward extension of
the proposed approach. The BPEL-oriented extensions are introduced to model the
BPEL constructs and are annotated according to the UML Profile for Automated
Business Processes [23], while QoS-oriented extensions are obtained from the Q-
WSDL documents of component services and are annotated onto the AD according to
the Q-WSDL notation.

Table 1 summarizes the main stereotypes that extend UML metaclasses to specify
BPEL models of composite services. Each stereotype can be applied to the instances
of the base metaclasses that the stereotype extends. The stereotypes applied to the
Action metaclass represent the main primitive BPEL types, i.e., invoke, to invoke an
operation of a web service, receive, to wait for a message from an external source and
reply, to reply to an external source.

Table 1. BPEL stereotypes

Stereotype Base Metaclass Description
«process» ActivityPartition BPEL process coordinator
«partner» ActivityPartition BPEL partner (component web service)
«receive» Action BPEL receive activity
«invoke» Action BPEL invoke activity
«reply» Action BPEL reply activity

234 P. Bocciarelli and A. D’Ambrogio

The mapping of BPEL primitives to LQN structures is shown in Figure 3. The
interested reader may refer to [8] for a detailed illustration of the model transformation.

The transformations are based on the following general rules:
• An ActivityPartition instance stereotyped as «process» or «partner»

is mapped to LQN Task instance.
• An Action instance stereotyped as «receive» or «invoke» is mapped to a

LQN Entry instance. An Action instance stereotyped as «reply» is instead
mapped to a LQN Activity instance of the LQN task associated to the
coordinator of the composite service.

• The ActivityEdge instance between two actions stereotyped respectively as
«receive» andr «invoke» is mapped to a Call instance in the LQN model.

• Fork and Join nodes are mapped to AND-Fork and AND-Join activities. Note
that, as shown in the Figure 3, in case of concurrent flows executed on different
partititions, a fork handler LQN activity is introduced to model the corresponding
entry call.

• The BPEL switch and while primitives are not mapped to specific LQN
constructs. They are dealt by associating PAprob/PArep tagged values to Action
instances stereotyped as «PAstep» in the switch/while constructs (according to the
SPT profile) and then using such tagged values to compute the number of calls to
LQN entries.

• A message exchanged between BPEL partners is modeled as an ObjectNode
instances and transformed to LQN Call instances from the entry of the LQN task
associated to the sending partner, to the entry of virtual LQN task (Net) that
models the network connecting the two BPEL partners. The virtual task has a
single entry whose execution demand (dem) attribute is derived from performance
properties described in the Q-WSDL. The number of calls (n_req and n_resp) to
such an entry can be derived by the Q-WSDL description as well. Specifically, the
values of dem, n_req and n_resp are obtained as follows:

}{ rS B,Bmin

ebs
dem =

ebs

m
req_n req=

ebs

m
resp_n resp=

where ebs is the size of the elementary block transferred on the network, Bs and
Br are the throughput (in terms of bit/seconds) specified in the Q-WSDL
description of the sending and the receiving partner, respectively, and mreq and
mresp are the sizes of the request and the response messages specified in the Q-
WSDL description, respectively.

The so-obtained LQN model is given as input to a LQN solver, which carries out

the model evaluation step and yields as output the predictions about the performance
of the composite web service.

In the proposed approach, the BPEL engine overhead due to the events related to
processing coordination activities of the orchestration is not taken into consideration
and thus the performance prediction cannot be regarded as representative of a real
orchestration engine.

 Model-Driven Performability Analysis of Composite Web Services 235

basic interaction

message exchange

flow

«receive»
a1:Action

«invoke»
a2:Action

«reply»
a3:Action

«process»
ap1:ActivityPartition

«partner»
ap2:ActivityPartition2

ae2:ActivityEdge

ae1:ActivityEdge

ap1:Task

a1:Entry

a3:Activity

ap2:Task

a2:Entry

ae1:Call

ae2

«receive»
a1:Action

«invoke»
a2:Action

«reply»
a4:Action

«process»
ap1:ActivityPartition

«partner»
ap2:ActivityPartition2

ae3:ActivityEdge

ae1:ActivityEdge

ap1:Task

a1:Entry

fh:Activity

ap2:Task

a2:Entry

ae1:Call

«reply»
a3:Action

a3:Activity
ae2:ActivityEdge

ae4:ActivityEdge

&

a4:Activity

&

ae4 ae3

ae2

«receive»
a1:Action

«invoke»
a2:Action

«reply»
a3:Action

«process»
ap1:ActivityPartition

«partner»
ap2:ActivityPartition2

ap1:Task

a1:Entry

a3:Activity ap2:Task

a2:Entry

ae1:Call

ae2req:ObjectNode

resp:ObjectNode
Net:Task

ne:Entry
{dem}

req:Call
(n_req)

resp:Call
(n_resp)

dummy

ae1:ActivityEdge

ae2:ActivityEdge

Fig. 3. Example mapping of UML-based BPEL primitives to LQN structures

236 P. Bocciarelli and A. D’Ambrogio

3.2 Reliability Prediction

Reliability-oriented extensions are annotated onto the AD by introducing a
«reliability» stereotype associated with the reliability QoS characteristics
specified in Q-WSDL. Specifically, the «reliability» stereotype is introduced to
specify the reliability characteristics of ActivityPartition instances that represent
both the BPEL coordinator and the component web services. The stererotype is
described by simple tags that specify the attributes of the characteristic and structured
tags that specify the QoS dimensions associated to the characteristic. In particular, the
«reliability» stereotype is described by the qualification and isOffered
simple tags and by the TimeToFailure and ExpFailures structured tags, which in
turn are both specified in terms of value, unit, source, type and direction
elements, as illustrated in Figure 1.

Let us assume that the mean value of the time to failure, shortly denoted as MTTF, is
specified for each service provided by BPEL partners in the composite web service
process. The MTTF value includes both failures of the partner network link connection,
that is responsible of the correct call and correct return of operation invocation from the
partner side, and failures of the body code for each operation provided by the BPEL
partner service.

Similarly, the reliability value specified for each operation of the BPEL coordinator
includes both failures of the coordinator network connection and the software failures.
The reliability of the network link can be obtained from the SLA (service level
agreement) signed with the network provider, while the reliability of software executed
at coordinator side can be obtained from statistical testing [18].

The nodes of the AD corresponding to instances of the ControlNode metaclass and
the AD edges are considered to be failure free.

According to a widely accepted assumption [25], the failures of the different services,
and of their relevant operations, are independent. By assuming an exponential
distribution probability for the failures in the BPEL process, the reliability associated to
each AD node a, corresponding to an instance of the Action UML metaclass that
represents a BPEL basic activity, can be computed as:

t
aMTTF

a etR

1

)(
−

= (1)

where Ra(t) and MTTFa are the reliability and the mean time to failure associated to
the node a of the AD, respectively.

The reliability of the composite web service described by the annotated AD is
predicted by use of an algorithm that iteratively applies a set of reduction rules until
only a single atomic node remains. The algorithm, inspired by [26], proceeds by
iteratively applying the reduction rules to the basic BPEL structures shown in Figure 4.

The structure of the annotated AD changes at each iteration and after a number of
iterations it is reduced to a single node. When this state is reached, the reliability
associated to the remaining node specifies the reliability of the composite web service
corresponding to the annotated AD under analysis.

 Model-Driven Performability Analysis of Composite Web Services 237

n

1i

aa RR i

n

1i
aa R*pR ii

k
a1a RR

Fig. 4. Reduction rules for reliability prediction

3.3 Performability Prediction

Let us consider n different candidate configurations CSi (i=1..n) of a composite
service CS, resulting from a service discovery activity that finds more than one

238 P. Bocciarelli and A. D’Ambrogio

concrete service to be bound to the services of the abstract model. Each configuration
may be analyzed by use of the methods illustrated in the previous sections in order to
obtain the prediction that leads to an optimal choice of the initial configuration in
terms of either performance or reliability.

At this time, it is quite usual to find conflicting predictions, in other words the
optimal configuration estimated in terms of performance is not the optimal one in
terms of reliability and vice versa. This claims for a joint analysis of performance and
reliability so that the comparison of different design alternatives, such as which one to
adopt as initial configuration, may be then based on predictions of the combined QoS
attribute known as performability.

The performability prediction is carried out by use of the following algorithm:

1. Generate the state transition diagram STD associated with the Markov chain
that represents the possible configurations which the composite web service
may undergo before experimenting a failure (this implies that when a
service fails and a working service providing the same functionality is
available, the composite web service switch to a new configuration that
includes the working service);

2. Select a candidate configuration as the initial configuration;
3. Use the reliability prediction method illustrated in Section 3.2 to obtain

the transition probabilities of the STD;
4. Calculate the absorbing probabilities P(CSi) of being in a given working

configuration (i=1..n) starting from the initial configuration;
5. Use the performance prediction method illustrated in Section 3.1 to obtain

the performance associated to each configuration, e.g., in terms of its
throughput T(CSi), and assign it as a reward to the configuration;

6. Obtain the performability prediction in terms of the expected reward rate
of the composite web service CS given by:

 ∑
=

=
n

i
ii CSTCSPCSRW

1

)()()((2)

where:
− RW (CS) is the expected reward rate of the composite service, i.e., an

overall attribute that combines both the throughput and the reliability
of the composite service;

− P (CSi) is the probability of the system to be in the i-th working
configuration starting from the initial configuration, as computed by
means of the state transition diagram (STD);

− T (CSi) is the throughput of the i-th candidate configuration.

The comparison among the so obtained reward rates for each candidate initial

configuration allows to carry out a choice that takes into account both the performance
and the reliability of the composite service.

The above described algorithm can be seen as a preliminary approach to
performability analysis, due to the fact that it is built upon the following assumptions:

 Model-Driven Performability Analysis of Composite Web Services 239

• the failures of services are independent, i.e. they only affect the reliability of the
overall composite service;

• the failure of a service is unrecoverable;
• services fail one at a time;
• failed services may be replaced by a working service that offers the same

functionality, in case it is found by the discovery activity;
• the cost of service replacement (i.e., the time needed to switch the composite

service to a new configuration) is negligible.

The following section illustrates an example case study that describes the application
of the proposed algorithm.

4 Example Application

In order to give an example application of the proposed model-driven methodology for
the performability prediction, let us consider a composite web service that provides an
operation for creating travel plans. This example has already been taken into
consideration in [8], where the performance of the composite web service is predicted in
terms of both the response time and the utilization by use of the method illustrated in
Section 3.1.

In this section we extend such a case study, in order to show how the performability
analysis that combines the prediction of performance and reliability attributes can lead
to results unexpected if such attributes are dealt with separately.

A travel plan is built by first looking for flight and hotel room availability,
according to the service consumer request, and then obtaining information about car
renting. The travel plan should also include information about transportation from the
airport to the hotel. According to user preferences, the plan may thus include either a
timetable of airport shuttles or an estimated cab fare. The travel plan is finally
presented to the customer for approval and booking. It is assumed that an average
70% of customers prefer a cab rather than an airport shuttle

The following component web services are required to implement the
travelPlanning operation of the composite web service:

• a service providing information about flight availability and reservation, denoted
as flights manager (FM) service;

• a service providing information about hotel reservation and airport services (e.g.,
timetables of airport shuttles), denoted as accommodation manager (AM) service;

• a service providing information about car renting and cab fare estimates, denoted
as transportation manager (TM) service.

A service discovery activity is carried out to bind each abstract service to a specific
concrete service matching the abstract service interface. The executable model
(annotated AD) is shown in Figure 5.

Let us now suppose that two different candidate services are available for binding
the TM service. Table 2 summarizes the QoS data extracted from the Q-WSDL
documents of the two alternative services, namely TMA and TMB.

240 P. Bocciarelli and A. D’Ambrogio

<<receive>>
tripRequest

<<invoke>>
flightReservation

<<invoke>>
hotelReservation

<<invoke>>
collectData

<<invoke>>
carReservation

<<invoke>>
cabInfo

<<invoke>>
shuttleInfo

<<reply>>
tripProposal

<<PAstep>>
{PAdemand = ('msr', 'mean', (110, 'ms'))}

<<PAstep>>
{PAdemand = ('msr', 'mean', (120, 'ms'))}

<<PAstep>>
{PAdemand = ('est', 'mean', (2.5, 'ms'))}

<<PAstep>>
{PAdemand = ('msr', 'mean',(120, 'ms'))}

<<PAstep>>
{PAdemand = ('est', 'mean', (10, 'ms'))}

<<PAstep>>
{PAdemand = ('est', 'mean', (115, 'ms')),
PAprob = 0.7}

<<PAstep>>
{PAdemand = ('est', 'mean', (95, 'ms')),
PAprob = 0.3}

<<PAstep>>
{PAdemand = ('est', 'mean', (50, 'ms'))}

<<PAclosedLoad>>
{PApopulation = $N}

«process»
TravelAgent

«partner»
FM

«partner»
AM

«partner»
TM

<<reliability>>
{qualification='threshold-best-effort';
isOffered='true';
TimeToFailure={5*10^8,'sec'
,'measured','mean','increasing}}

<<reliability>>
{qualification='threshold-best-effort';
isOffered='true';
TimeToFailure={6*10^8,'sec',
'measured','mean','increasing}}

<<reliability>>
{qualification='threshold-best-effort'
;isOffered='true';
TimeToFailure={8*10^8,'sec',
'measured','mean','increasing}}

<<reliability>>
{qualification='threshold-best-effort';
isOffered='true';
TimeToFailure={10*10^8,'sec'
,'assumed','mean','increasing}}

Fig. 5. Annotated AD for the example application

 Model-Driven Performability Analysis of Composite Web Services 241

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

0,0045

0,005

0 10 20 30 40 50 60

th
ro

u
g

h
p

ut

users

TM(A)

TM(B)

Fig. 6. Performance prediction (throughput) for the example application

Table 2. QoS data obtained from Q-WSDL documents

Parameter TMA TMB
CarReservation time demand 120 ms 90 ms
CabInfo time demand 115 ms 84 ms Performance
Network bit rate 10 Mb 100 Mb
MTTF 10*10^8 7.2*10^7

Reliability
R(1year) 0.961 0.645

If the prediction activity is limited to performance-related attributes, the choice of
the initial configuration can be performed by use of the model-driven method
described in Section 3.1.

The results of such a prediction activity for the example case study are summarized
in the graph depicted in the Figure 6. The diagram shows the throughput of both the
composite service with TMA and the composite service with TMB, for different
numbers of composite service consumers. It is easy to be convinced that if we focus
the attention on the performance attribute only, the choice of the alternative denoted
as TMB is to be preferred. This means that the composite service will be initially
configured by binding the carReservation and the cabInfo operations with those
provided by service TMB.

As stated in section 3, a performability prediction is instead carried out in order to
understand which initial configuration of the composite web service would lead to a
better expected reward rate.

The first step of the algorithm carries out the generation of the STD that represents
the possible configurations which the composite service may undergo before
experimenting a failure. The states of the STD represent the working configurations
of a composite service, while the transitions represent the probabilities to remain in a
configuration or move to a different configuration, in case of failure of one service.

242 P. Bocciarelli and A. D’Ambrogio

An additional state is introduced in the STD to represent the failed composite service,
i.e., the state reached when a service fails in a given configuration and no services are
available to replace it.

Figure 7 represents the STD for the example case study. The state CS1 represents
the composite service in the configuration that includes TMA, while the state CS2
represents the composite service in the configuration that includes TMB. The state CS0
represents the composite service in the failed state.

At the second step of the algorithm, a candidate initial configuration is selected. In
the example case, two different alternative may be considered for the initial
configuration: the first (denoted as STDA) assumes CS1 as the initial configuration
and CS2 as a backup configuration in case of TMA failure, while the second (denoted
as STDB) assumes CS2 as the initial configuration and CS1 as a backup configuration
in case of TMB failure.

Fig. 7. STD for the example application, with two alternative initial states (STDA and STDB)

In the STDA case, the composite service is initially in the configuration state CS1,
that includes TMA. In case of TMA failure, the composite service switches to the
configuration state CS2 in which TMA is replaced by TMB. In case of failure of either
the composite service coordinator or of other component services the composite
service fails. In case of a failure in the configuration state CS2 no service
replacements are available and thus the overall composite service fails.

In the STDB case, the composite service is initially in the configuration state CS2, that
includes TMB. In case of TMB failure, composite service switches to the configuration
state CS1, in which TMB is replaced by TMA. In case of failure of either the composite
service coordinator or of other component services the composite service fails. In case
of a failure in the configuration state CS1 no service replacements are available and thus
the overall composite service fails.

At the third step, the transition probabilities in the STD are obtained both by carrying
out the reliability prediction method described in Section 3.2 and from the reliability
data extracted from the Q-WSDL documents of TMA and TMB (see Table 2).

Specifically, the reliability prediction gives the probability of remaining in a given
working configuration state of the composite service, while the transition probabilities
between working configuration states represent the probability of having a failure of

 Model-Driven Performability Analysis of Composite Web Services 243

TMA (for STDA) and TMB (for STDB). Such probabilities are obtained by subtracting
the reliability of TMA and TMB from 1. The transition probabilities between a
working state and the failed state are instead obtained by subtraction from the
previous transition probabilities, so that their sum equals 1.

Table 3 gives the transition probabilities for STDA and STDB. The reliabilities used
to obtain such probabilities are computed by use of equation (1) from the MTTF over
a time interval (mission time) of one year.

Table 3. Transition Probabilities for STDA and STDB

Transition
Probability

STDA STDB

p11 0.746 0.746
p22 0.385 0.385
p12 0.039 0
p21 0 0.355
p10 0.215 0.254
p20 0.615 0.260

The fourth step of the algorithm calculates the absorbing probabilities P(CSi) of

being in a given working configuration starting from the initial configuration CS1 (in
the STDA case) or from the initial configuration CS2 (in the STDB case), as illustrated
in Table 4.

Table 4. Absorbing probabilities of states CS1, CS2 and CS0 from initial state

Alternative Description Value
P(CS1) = p11 0.746

P(CS2) = p12* p22 0.015 STDA
P(CS0) = p12* p20+ p10 0.239

P(CS1) = p21*p11 0.265
P(CS2) = p22 0.385 STDB

P(CS0) = p21* p10+ p20 0.350

The fifth step introduces the reward to be associated to each configuration state of
the STD. This step is carried out by use of the performance prediction method
illustrated in Section 3.1, which yields the performance associated to each
configuration in terms of the throughput T(CSi), as illustrated in Figure 6 for the
composite service in the configurations with TMA and TMB.

Specifically, line denoted as TM(A) in Figure 6 is the throughput to be assigned as
reward to the configuration state CS1, while line denoted as TM(B) in Figure 6 is the
throughput to be assigned as reward to configuration state CS2.

Finally, at the sixth and last step of the algorithm, the expected reward rate is
obtained for the two alternatives by use of equation (2). The results are graphically
shown in Figure 8 for different numbers of composite service users.

The performability prediction in Figure 8 shows that an initial configuration with
TMA is to be preferred, in contrast with what obtained from the performance prediction
in Figure 6.

244 P. Bocciarelli and A. D’Ambrogio

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0 10 20 30 40 50 60

ex
p

ec
te

d
 re

w
ar

d
 r

at
e

users

STD(A)

STD(B)

Fig. 8. Expected reward rate for the example application

This simple but effective case gives an example of the importance of combining
the analysis of performance and reliability attributes. Even though the proposed
algorithm undergoes some restricting limitations it can thus be considered as a first
step towards the adoption of performability-oriented QoS management of composite
web services.

5 Conclusions

The adoption of service-oriented architectures for software development is gaining
momentum due to the increasing availability of services, or customized units of
software that run in a network and that can be rapidly composed to yield distributed
applications that can respond quickly to changing requirements.

In this context, service providers are strategically interested both to predict and
describe the QoS of the offered services.

This paper has introduced a model-driven approach for predicting the performability
of composite services specified by use of BPEL. The approach is founded on Q-WSDL,
a lightweight QoS-oriented extension of the Web Service Definition Language (WSDL)
and exploits an already available method for performance prediction.

The paper has introduced a model-driven method for the reliability prediction of
composite services, which has then combined to the performance-related one to
eventually obtain a combined prediction quantified in terms of performability.

The proposed approach has been applied to a simple case study that has shown
how the performability analysis may lead to predictions that do not correspond to
those obtained by approaches that only consider the performance attribute.

 Model-Driven Performability Analysis of Composite Web Services 245

Work is in progress to implement the proposed method by use of existing
performability evaluation tools (e.g., [27][28]) and to remove some of the existing
limitations, e.g., by taking into account both multiple failures of services in a given
configuration and the cost of composite service reconfiguration as a negative reward.

Acknowledgements

This work was partially supported by funds from the University of Roma TorVergata
research on “Performance Validation of Complex Systems” and by the CERTIA
Research Center.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. Springer, Heidelberg
(2004)

2. WWW Consortium, Web Services Description language (WSDL) Version 2.0, W3C
Working Draft (January 2006), http://www.w3.org/TR/wsdl20

3. Ludwig, H.: Web Services QoS: External SLAs and Internal Policies - Or: How do we
deliver what we promise? In: Proceedings of the 4th IEEE International Conference on
Web Information Systems Engineering, WISE 2003 Workshops, Italy (2003)

4. Menascé, D.A.: QoS Issues in Web Services. IEEE Internet Computing, 72–75
(November/December 2002)

5. Peltz, C.: Web Services Orchestration and Choreography. IEEE Computer 36, 46–52
(2003)

6. Wohed, P., Van Der Aalst, M.P.W., Dumas, M., Ter Hofstede, A.H.M.: Analysis of Web
Services Composition Languages, The Case of BPEL4WS. In: Song, I.-Y., Liddle, S.W.,
Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 200–215. Springer,
Heidelberg (2003)

7. IBM, BPEL – Business Process Execution Language for Web Services, version 1.1 (2003)
8. D’Ambrogio, A., Bocciarelli, P.: A Model-driven Approach to Describe and Predict the

Performance of Composite Services. In: Proceedings of the 6th Int. Workshop on Software
and Performance (WOSP), Buenos Aires, Argentina (2007)

9. D’Ambrogio, A.: A WSDL Extension for Performance-enabled Description of Web
Services. In: Yolum, p., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS,
vol. 3733. Springer, Heidelberg (2005)

10. Object Management Group, UML Profile for Scheduling, Performance and Time, version
1.1 (January 2005)

11. Meyer, J.F.: On evaluating performability of degradable computing systems. IEEE
Transactions on Computers C-29(8), 720–731 (1980)

12. Smith, R.M., Trivedi Kishor, S., Ramesh, A.V.: Performability Analysis: Measures, an
Algorithm, and a Case Study. IEEE Transactions on Computers 37(4), 406–417 (1988)

13. D’Ambrogio, A.: A Model-driven WSDL Extension for Describing the QoS of Web
Services. In: Proceedings of the IEEE International Conference on Web Services (ICWS),
Chicago, USA (2006)

14. Object Management Group, UML Profile for Modeling Quality of Service and Fault
Tolerance Characteristics and Mechanisms, Adopted Specification

15. Menascé, M.A.: QoS Issues in Web Services. IEEE Internet Computing, 72–75
(November/December 2002)

16. Object Management Group, Meta Object Facility (MOF) Specification, version 1.4 (2002)

246 P. Bocciarelli and A. D’Ambrogio

17. Cortellessa, V., Di Marco, A., Inverardi, P.: Software Performance Model-Driven
Architecture. In: Proceedings of the ACM Symposium on Applied Computing, Dijon,
France (2006)

18. Object Management Group, Unified Modeling Language (UML): Superstructure, version
2.0

19. Rosario, S., Benveniste, A., Haar, S., Jard, C.: Probabilistic QoS and soft contracts for
transaction based Web services orchestrations. In: Proceedings of the International
Conference on Web Services (ICWS 2007), Salt Lake City, Utah, USA (2007)

20. Xu, J., Oufimtsev, A., Woodside, M., Murphy, L.: Performance modeling and prediction
of enterprise JavaBeans with layered queuing network templates. ACM SIGSOFT
Software Engineering 31(2) (2006)

21. Gu, G.P., Petriu, D.B.: From UML to LQN by XML algebra-based model transformations.
In: Proceedings of the ACM Fifth International Workshop on Software and Performance
(WOSP 2005), Palma de Mallorca, Spain (2005)

22. D’Ambrogio, A.: A Model Transformation Framework for the Automated Building of
Performance Models from UML Models. In: Proceedings of the ACM Fifth International
Workshop on Software and Performance (WOSP 2005), Palma de Mallorca, Spain (2005)

23. Gardner, T.: UML Modelling of Automated Business Processes with a Mapping to BPEL. In:
Proceedings of the First European Workshop on Object Orientation and Web Services (in
conjunction with ECOOP 2003), Darmstadt, Germany (2003), http://www.ibm.com/
developerworks/webservices/library/ws-uml2bpel/

24. Lyu, M.R.: Handbook of Software Reliability Engineering. McGraw-Hill, New York
(1995)

25. Whittaker, J.A., Thomason, M.G.: A Markov Chain Model for Statistical Software
Testing. IEEE Transactions on Software Engineering 20(10), 812–824 (1994)

26. Cardoso, J., Sheth, A.P., Miller, J.A., Arnold, J., Kochut, K.: Quality of service for
workflows and web service processes. Journal of Web Semantics 1(3), 281–308 (2004)

27. Das, O., Woodside, C.M.: Dependable-LQNS: A Performability Modeling Tool for
Layered Systems. In: Kemper, P., Sanders, W.H. (eds.) TOOLS 2003. LNCS, vol. 2794.
Springer, Heidelberg (2003)

28. Deavours, D.D., Clark, G., Courtney, T., Daly, D., Derisavi, S., Doyle, J.M., Sanders,
W.H., Webster, P.G.: The Möbius Framework and Its Implementation. IEEE Transactions
on Software Engineering 28(10), 956–969 (2002)

Dynamic Server Allocation for Power and

Performance

Joris Slegers, Nigel Thomas, and Isi Mitrani

School of Computing Science,
Newcastle University, NE1 7RU

{j.a.l.slegers,nigel.thomas,isi.mitrani}@ncl.ac.uk

Abstract. We consider a system of servers that process incoming re-
quests. These requests experience periods of high and low arrival rate.
Servers can be powered down dynamically to conserve power. We exam-
ine this system with a view to balancing the need between processing
incoming requests quickly and reducing power consumption. The system
is modeled formally and heuristics are presented to decide when servers
should be powered down or up. Preliminary results of the performance
of these heuristics are also included.

Keywords: Resource allocation, dynamic optimization, power conser-
vation.

1 Introduction

The vast amount of power that servers and data centres consume are start-
ing to become a major concern, both from an economic (see e.g. [4]) and an
environmental point of view. Consequently a lot of work has focussed towards
reducing power consumption of individual servers and their components. Much
less attention seems to have been paid to the possibility of dynamically power-
ing servers on and off as demand fluctuates (see [1] for an overview). Previous
work that does consider this possibility seems to take its inspiration mostly
from work on load balancing and control theory (e.g. [9]). Another interesting
approach is found in [2], where resource allocation is done through a (mock)
bidding system.

This paper is based on previous work by the authors ([10] and [11]), where
reallocation of servers between different job types was considered. The optimiza-
tion goal there was purely to improve the response time of the system. This
model has been adapted here to allow the optimization goal to include the en-
ergy consumption of a system.

The novelty of this paper lies in the explicit modelling of a system with a view
to making a trade off between performance of the system and its power con-
sumption, by dynamically powering down servers and powering them up again
according to demand. Furthermore, we also present several heuristic policies that
try to optimize the behaviour of this system, given this trade off. Finally we also
present some initial results regarding their performance.

S. Kounev, I. Gorton, and K. Sachs (Eds.): SIPEW 2008, LNCS 5119, pp. 247–261, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

248 J. Slegers, N. Thomas, and I. Mitrani

2 Modeling the System

We consider a model where there are N homogeneous servers. These can be in
one of two states: power up or power down. When a server is in power up, it can
service incoming requests. When a server is in power down, it can’t process any
requests, but will consume less (or no) power. The details of the power down state
are expressly left ambiguous. It can mean the server is completely shutdown, in
some sleep state or any other state, as long as it is less power consuming. We
will refer to ‘powering up’ to denote the decision to switch a server from the
power down state to the power up state and ‘powering down’ for the converse.

The service time of a request is assumed to be exponentially distributed with
rate μ. The requests themselves arrive according to a two-phase Poisson process,
i.e. there are ‘high’ and ‘low’ arrival periods. During a high period, denoted by
l = 1, requests arrive as a Poisson process with rate λhigh. During a low period,
notation l = 0, fewer requests arrive, with rate λlow. The high and low periods
themselves have durations that are distributed exponentially with mean 1/ξ and
1/η respectively. We consider the servers that are currently powered up to be
part of one (logical) pool, called the powered servers pool, with an unbounded
queue which holds the incoming requests. We denote the number of powered
up servers by kup. The number of jobs in the queue (including jobs currently
being processed) will be denoted by j. The other servers, which are powered
down, are in a pool as well, which we will call the powered down pool. We will
denote their amount by kdown. Since all the servers are homogeneous, we do
not distinguish between individual servers in each pool, but rather focus on the
number of servers powered up or down.

We assign a cost, cjob, to keeping a job in the system for one unit of time. These
‘holding costs’ reflect the relative value of completing a job quickly. Conversely
we assign a negative cost (i.e. profit) cpow to keep a server powered down for a
unit of time. This should reflect the relative energy savings of not powering up
a server.

A server can be switched from the pool of powered servers to that of powered
down servers. This will take an amount of time, assumed to be exponentially
distributed with rate ζdown. We will denote the number of servers powering down
by mdown. Conversely they can be powered up again. The number of servers
powering up will denoted mup. The time this will take is again assumed to be
exponentially distributed, now with rate ζup. During a switch a server cannot
serve jobs but it does consume power, i.e. it doesn’t accumulate a profit from
energy savings. Furthermore, the powering up and down of machines can incur
additional costs, e.g. through peak power consumption, which we will denote by
Cup and Cdown for powering up and powering down respectively.

This means we can describe a state S of the system by:

S = (j, l, kup, kdown, mup, mdown). (1)

There is some redundancy in the notation since the total number of servers in
the system should be constant, i.e. kup + kdown + mup + mdown = N . This is

Dynamic Server Allocation for Power and Performance 249

done because of convenience and has no further impact. The system behaviour is
further characterized by the following transition probabilities (when no switching
decision is made):

r(S, S′)=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

lλhigh + (1 − l)λlow if j′ = j + 1
min(kup, j)μ if j′ = j − 1
mdownζdown if k′

down =kdown + 1 and m′
down =mdown − 1

mupζup if k′
up = kup + 1 and m′

up = mup − 1
lξ if l′ = 0
(1 − l)η if l′ = 1

.

(2)
This characterizes a continuous time Markov chain. We can convert this into a
Markov decision process by associating a set of allowed actions {a} with each
state S. Here we consider these actions to be:

– doing nothing, denoted by a = 0
– powering down i servers, with 0 < i ≤ kup, denoted by a = −i
– powering up i servers, with 0 < i ≤ kdown, denoted by a = i.

These delays and costs will make the decision of when to power a server up or
down non-trivial, especially in an environment with bursty arrivals. Our overall
optimization goal is now to minimize the cost of the system, i.e. to find a policy of
powering up/down that minimizes the average cost of the system per unit time.
Here the relative value of the holding cost cjob versus the profit from keeping a
server powered down are implicitly traded off.

Please note that the model given here is a (continuous time) Markov decision
process (MDP). In principle these can be solved, i.e. we can find the policy that
minimizes the long-term mean operating cost of the system, but for practical
reasons this is often infeasible since the size of the state space involved quickly
explodes. Amongst other things, a proper solution requires truncation of the
maximum allowed queue length. For example we could consider a system with
25 servers and a maximum allowed queue length of 50. This number includes the
jobs currently being processed, so it allows for roughly 25 waiting jobs. Such an
MDP has 334152 states. This might seem a manageable number, but this would
give rise to a system of 334152 simultaneous equations in as many different
variables. These equations would then have to be repeatedly solved to find the
optimal power-policy, in effect requiring the use of a (admittedly very sparse)
matrix with over 111 billion elements. For a system of 26 servers, this rise to
372708 states and a matrix of just under 139 billion elements. To make matters
worse, the calculated policy is non-trivially dependent on every single parameter
of the system, making even the most clever precalculation infeasible.

3 Policies

In this section we consider some policies we can implement to balance the per-
formance of the system with its power consumption. We will consider several

250 J. Slegers, N. Thomas, and I. Mitrani

different policies. The first is the optimal static policy, i.e. an initial allocation
of servers that will not be changed for the duration. We also look at several
dynamic policies.

Conspicuously absent in this section will be the optimal (dynamic) policy.
As we have shown in previous work [11] it is very difficult to calculate the
optimal policy. It is prohibitively expensive in computational effort for all but the
simplest cases and also requires us to make some non-trivial modelling choices.
For these reasons, this paper will not include the optimal dynamic policy.

3.1 Optimal Static Allocation

It is possible to get the optimal static allocation although this is not wholly
trivial. We will do this by examining a single queue with n servers and a high/low
arrival process. It is possible to calculate the mean queue length Ln for that
queue. Since we can repeat this process for any number of servers n, we can
easily determine the optimal number n∗ that minimizes cjobLn∗ + cpow(N −n∗).
This is then the optimal static allocation. In the rest of the paragraph we will
outline the method for getting the mean queue length Ln. The details are rather
technical and not included in this paper.

We can use the spectral expansion method to derive a solution for this queue.
Details about this method can be found in the original paper [8]. The spec-
tral expansion method enables the solution of certain two-dimensional Markov
processes on a semi-infinite lattice strip. In the case considered here, the infi-
nite dimension of the Markov process represents the different queue lengths a
queue can attain. The finite dimension represents the high/low state of the ar-
rival stream. The requirement for the technique to work is that from a certain
threshold K the possible transitions out of a state no longer depend on the state
in the infinite dimension. Here this is satisfied, since if there are at least as many
jobs in the system as servers, i.e. N , the completion rate is then Nμ, regardless
of the number of jobs in the system.

The spectral expansion method can be applied, giving an explicit, closed form,
expression for the probability of being in each possible state. Although it is
straightforward to calculate this for any given set of parameters, the expressions
involved are very complex when expressed in abstract parameters. Therefore
these expressions are not given in this paper.

3.2 Idle Heuristic

This heuristic policy follows the näıve policy of powering down any server that is
idle and powering up a server, if possible, when there are jobs in the queue that
are not currently being served by any server. It does not take account of switching
times. Because in general the switching times are non-zero, we have to be slightly
more precise. That is, we power up a server, if possible, when the number of jobs
in the queue is bigger than the number of servers currently servicing a job and
the number of servers being switched on, i.e. when: j > kup +mup. This assumes
there are no batch arrivals, but we can easily extend the heuristic for that case
by saying we power up j − kup − mup servers.

Dynamic Server Allocation for Power and Performance 251

It is worth noticing that even when switching is both instantaneous and free,
this idle heuristic is not necessarily optimal. Consider the slightly odd situation
where i · cjob < −cpow, i.e. the savings per unit time of having a single server
powered down outweigh the penalties of having i ≥ 1 jobs waiting. Then clearly
the optimal policy is to only power up a server when there are more than i jobs
waiting to be served. Although this is a somewhat artificial situation, it does
show how, even when the model is vastly simplified, finding the optimal policy
is not completely trivial.

3.3 Threshold Heuristic

The Threshold Heuristic is a generalization of the Idle Heuristic. For this heuris-
tic we choose some threshold, jthresh. Servers are then powered down when there
are less than jthresh jobs waiting to be served. In terms of our model, this means
we power down a server if j < jthresh + kup + mup. Conversely we power up a
server if j > jthresh + kup + mup, i.e. if there are more than jthresh jobs waiting
to be served.

Choosing the right threshold jthresh is not straightforward and should, in
general, depend on both the differential between the holding cost and the power
savings, and the switching times. The Idle Heuristic is equivalent to setting
jthresh = 0.

3.4 Semi-static Heuristic

In this heuristic we detect whether the arrival process is in the low or in the high
state. Depending on what arrival state the system is in, the optimal number of
servers is allocates, assuming the high/low period lasts an infinite amount of
time, i.e. we allocate as many servers as would be optimal if the arrival behaves
as a standard Poisson process.

Since there are N servers in the system, we can consider any distribution of
n powered up servers, serving the queue, and N − n powered down servers. The
queue has a certain load ρ = λ

nμ , where we use the appropriate λhigh or λlow

depending on whether we are in a high or low arrival phase. The formula for the
mean response time, R̄, for this M/M/n queue is quite well known (see e.g. [6])
and uses the famous Erlang C formula for the probability that all the servers in
the queue are busy, which we will denote by Q here. The mean response time is:

R̄n =
1
μ

[1 +
Q

n(1 − ρ)
] . (3)

So that we can easily find the n that minimizes:

cjobR̄n + cpow(N − n) , (4)

where we assume that the queue is stable, i.e. λ < nμ for the appropriate
λhigh/low.

252 J. Slegers, N. Thomas, and I. Mitrani

3.5 High/Low Heuristic

The High/Low Heuristic is a modified version of the On/Off heuristic introduced
by the present authors in [10]. It treats the queue of jobs as a deterministic fluid
and assumes high/low periods last an infinite time. This means jobs arrive at
rate

γ =

{

λhigh if l = 1
λlow if l = 0

, (5)

where we recall that l = 1 denotes that the arrival stream is high and l = 0
denotes that it is low. Jobs are served at rate kupμ. We will use this approxima-
tion to calculate the cost of a decision until the queue empties. Since the system
is (assumed to be) stable, this fluid approximation guarantees the queue will
empty in finite time. We assume that switching servers complete their switches
deterministically in the mean time indicated by the exponential distribution, i.e.
when there are mup servers being powered up, the first one completes its power
up after mup

ζup
units of time, the second mup−1

ζup
units of time after that, etc.

Suppose there are kup servers serving the queue, no servers currently being
powered up or down and no powering up or down decision is made at this time.
Then the queue decreases at constant rate kupμ−γ and empties at time j

kupμ−γ .
So the expected cost under these approximations can be shown to be the area
of a triangle (see Figure 1, left) with as its length the time to empty the queue
and as its height the queue size j at the start. More formally we get:

C0 =
cjobj

2

2(kupμ − γ)
+

cpowkdownj

kupμ − γ
. (6)

The first part of equation 6 represents the the holding costs until the queue
empties and the second part represents the power savings, again until the
queue empties.

Fig. 1. The triangle whose area represents the holding cost (left) and the cost when
there is a switch present (right)

When there is already a server being powered up (see Figure 1, right), assum-
ing that the queue does not empty during the switch, its size at the point when
the switch is completed, i.e. after 1/ζup, would be equal to jswi, where

jswi = j − (kupμ − γ)/ζup. (7)

Dynamic Server Allocation for Power and Performance 253

This means that the total cost is:

C1 =
cjobjswi

ζup
+

cjob(j − jswi)
2ζup

+
cjobj

2
swi

2((kup + 1)μ − γ)

+ cpowkdown

(

1
ζup

+
jswi

(kup + 1)μ − γ

) . (8)

Here the first two terms represent the cost of the queue until the switch is
expected to be completed, the third the cost of the queue after that moment
until the switch is completed and the last terms again represents the savings from
powered down servers. Extending (8) to multiple switches is straight-forward,
although the formulae become increasingly convoluted. It should further be noted
that when the decision is taken to power up i servers, (8) should be increased
with the term iCup.

Finally, can consider the case where a server is already being powered down.
The cost then becomes:

C−1 =
cjobj

2

2((kup − 1)μ − γ)
+

cpowkdown

ζdown
+ cpowkdown

(

j

(kup − 1)μ − γ
− 1

ζdown

)

.

(9)
This too can be easily extended when multiple servers are powering down and
should be increased with the term iCdown when it is a current decision to power
i down servers, rather than an existing situation.

This heuristic now chooses the switching decision that minimizes the expected
cost, at every state change. This calculation may seem prohibitively expensive,
however note that we have to consider at most N +1 possible decisions, assuming
all our decisions will result in stable systems. Furthermore, it is entirely feasible
to precalculate a table of decisions, or even to recalculate one on a very regular
basis to deal with changing parameters.

3.6 Average Flow Heuristic

The average flow heuristic is again an adaptation of a heuristic introduced in
[10]. It is very similar to the High/Low heuristic. The entire analysis of the
previous paragraph is applicable, with one change. For this heuristic we average
out the high and low periods. This can be thought of as assuming that they are
very short. This means we can use equations 6, 8 and 9, but have to substitute:

γ =
λhighη + λlowξ

ξ + η
. (10)

The rest of the analysis is entirely the same. It should be noted that with this
heuristic we can restrict ourselves to just considering 3 possible decisions: power-
ing 1 server up, powering 1 server down or doing nothing. This is because there
are no wholesale changes in state (like the arrival stream turning on or off) and
we can thus expect the proposed switches to be much more modest.

254 J. Slegers, N. Thomas, and I. Mitrani

4 Results

In this section we will present some preliminary results. The heuristics in the
previous section will be compared in performance under two different scenarios.
We will also examine the effect of asymmetry in powering up and powering down
times. And finally we will also take a separate look at the performance of the
threshold heuristic.

4.1 Increased Bursts

For this experiment the system contains N = 35 servers, which process re-
quests at a mean rate of μ = 1. The arrival rate in the low period is λlow = 10
throughout the experiment, so that if all the servers is powered up, utilization is
10
35 ≈ 29%. The arrival rate in the high period is plotted on the x-axis and varies
from λhigh = 10 to λhigh = 30. This means that if the system is a high-arrival
period and all the servers are powered up, utilization varies from 29% up to 86%.
Here the high arrival periods last a mean time of ξ−1 = 10 and the low arrival
periods last a mean time of η−1 = 100. This means the highest average utiliza-
tion is just 34%, but the peak demands mean this number is very misleading.
Powering up or down is free, but takes ζ−1

up = ζ−1
down = 1, or the equivalent of

one completion time in the mean. Finally we consider the holding cost of a job
to be cjob = 1 and the benefit of powering down cpow = −0.5 half that. These
numbers are of course relative and it just signifies that having a job in the queue
is twice as expensive as having a server powered up.

Fig. 2. Increasingly more intensive arrivals in the high period. The x-axis shows the
high arrival rate λhigh and the y-axis the mean cost.

Dynamic Server Allocation for Power and Performance 255

In Figure 2 we show the performance of the system under several heuristics.
The costs were obtained from simulating the system for T = 10000 units of time
and the displayed results form the averages from 50 runs. The 95 percentile of
the relative error for each of these is small, typically within 5%, although the
static allocations are a lot more susceptible to stochastic noise in the simulation
and here the 95 percentile relative error can be higher.

The dash-dotted line represents the cost when all the servers are powered up
all the time. This can be considered a baseline cost of sorts. As we can see the idle
heuristic, an obvious choice for a heuristic, does not manage to improve on this.
If we calculate the cost of a system that just has the optimal number of servers
powered up, the dashed line, we find a significant improvement when the peak
arrival rate is relatively low. When it increases, the optimal server allocation
decides more and more servers have to be powered up so it can cope with these
peak arrivals, eventually converging on the case where all the servers are powered
up. Please note that this is also a static heuristic so its good performance is quite
remarkable. The semi-static heuristic performs similarly at lower peak arrival
rates, but its performance degrades more steeply.

The two fluid-approximation heuristics perform very well, even when the peak
load is high. They seem to strike a good balance between the relatively high time
needed to power up/down servers and the advantages of powering down servers
when the system is quiet. There is a notable drop in average cost for the average
flow heuristic from λhigh = 20 to λhigh = 21. In Figure 3 we can see this is related
to the amount of switches the average flow heuristic makes. When λhigh = 21,

Fig. 3. Increasingly more intensive arrivals in the high period. The x-axis shows the
high arrival rate λhigh and the y-axis the mean number of switches per unit time.

256 J. Slegers, N. Thomas, and I. Mitrani

the mean arrival rate γ increases to just over 11 and this seems to make the
heuristic a lot less prone to switching.

4.2 Increasing Cost Differential

For this experiment we focus on the effect of the cost differential between the
power costs and the holding costs. Please recall that the system is modeled in
such a way that the (negative) power cost cpow of a powered down server is
the difference between being (fully) powered up and powered down. This means
we can add an arbitrary constant to any cost we find. This will explain the
negative overall cost in the following results, since we have fixed the cost of
the system when all the servers are permanently powered up at 0. We can do
this, since this cost is obviously independent of the benefit we gain from any
powered down server.

Here the low arrival rate is λlow = 10 and the high arrival rate is λhigh = 25.
Again, the mean duration of a high period is ξ−1 = 10 and the mean duration of
a low period is η−1 = 100. Powering up or down is free but lasts ζ−1

up = ζ−1
down = 1

unit time, which is also the mean time for a job completion μ−1 = 1, of one of
the N = 35 available servers.

In Figure 4 we show the cost for a relative power cost of cpow = −2 up to
cpow = −0.1. For the latter case it makes almost no sense to ever power a server

Fig. 4. The effect of increasing cost differential between holding and power costs. The
x-axis shows the (negative) power cost of a powered down server. The y-axis shows
the cost savings relative to having all the servers powered up.

Dynamic Server Allocation for Power and Performance 257

down, as the power savings will be minimal. But for the first case we will rather
have 2 more jobs waiting in the queue than power up a server. Again the results
are averages of 50 runs for T = 10000 units of time.

Here we see that the cost improvement we can get by using the Average
Flow heuristic is large. The High/Low heuristic also significantly improves over
having no servers powered down, especially when the cost differential between
holding and power costs increases. Surprisingly the semi-static heuristic follow
the High/Low heuristic very closely in this scenario. This would suggest that
they behave very similarly in this scenario. Indeed, Figure 5 seems to indicate
this is true, at least for the amount of switching both heuristics do. Finally
we note that the Idle heuristic continues to perform poorly.

4.3 Asymmetrical Switching Times

It can be noted that there is often a significant asymmetry between the time
required to power up and that to power down. This depends on the mechanism
used for this powering up and down. E.g. the time required to hibernate a nor-
mal desktop is much longer than the time needed to wake it from hibernation. In
contrast, complete shutdown of a computer is often a lot quicker than boot up.
The first asymmetry seems more attractive since we can then power up servers
quickly when needed, whereas the powering down occurs when the system is un-
der used. But we could also argue that the total time required to go through the
cycle of powering up and down is the determining factor, since that determines

Fig. 5. The number of switches made by the Semi Static and High/Low heuristics. The
x-axis shows the (negative) power cost of a powered down server. The y-axis shows
the number of switches.

258 J. Slegers, N. Thomas, and I. Mitrani

the overall responsiveness of the system. In this subsection we show the results
of an experiment where we vary the asymmetry between the powering up and
down but not the total time required to power a server up and then down.

Table 1. The impact of different asymmetry between powering up and powering down
times on some heuristics

Slow up Even Fast up

Idle Heuristic 35.5 35.4 35.6
Average Flow Heuristic 25.9 25.8 25.7
High/Low Heuristic 26.5 26.8 26.4

In Table 1 we see the result of differing asymmetry on the performance of
three heuristics. The system under consideration here has N = 35 servers, which
complete jobs at a rate μ = 1 each. High arrival periods last a mean time of
ξ−1 = 100 and have an arrival rate of λhigh = 30. Low arrival periods last a mean
time of η−1 = 100 and have an arrival rate of λlow = 20. The holding cost for
jobs is cjob = 1 and the negative powering down cost is cpow = −0.5. Powering
up or down is not free but costs Cup = Cdown = 0.5. The total powering time
is fixed at ζ−1

up + ζ−1
down = 2. But for the first column the powering up time

ζ−1
up = 1.5 and ζ−1

down = 0.5, implying that we have slow powering up but quick
powering down. For the second column both the powering up and down time is
ζ−1
up = 1 = ζ−1

down, meaning both powering up and down take the same amount
of time. Finally the third column has quick powering up, ζ−1

up = 0.5 but slower
powering down ζ−1

down = 1.5. It is clear from Table 1 that the impact of the
asymmetry in powering up and down times on the performance of the heuristics
is negligible. This means it is the overall time it takes to complete a power up
and power down cycle that matters, not just the time taken to power up.

4.4 The Threshold Policy

We now consider the performance of the previously described threshold heuristic.
This heuristics need a parameter denoting the acceptable threshold. In Figure 6
we show the average cost of the threshold heuristic, given a queue length para-
meter from 0, i.e. it will behave as the idle heuristic, to 10, i.e. it will view a
queue of at most 10 jobs as a sign to power down a server. On the other axis in
the plane, the different λhigh are displayed, just as in the subsection 4.1. On the
z-axis we have the average cost.

Here the cost is almost linearly increasing in the selected value of the threshold
but with a minimum at 0. This implies that the threshold policy does no better
than the Idle heuristic, which we now know to be poor. A similar result holds for
the threshold policy under the experiment in 4.2. This means we can consider
the threshold policy to be a poor choice for a heuristic.

Dynamic Server Allocation for Power and Performance 259

Fig. 6. Increasingly more intensive arrivals in the high period. The x-axis shows the
high arrival rate λhigh and the y-axis the selected threshold. The z-axis shows the mean
cost per unit time.

5 Conclusions and Future Work

We have presented a model with the view to balancing performance and power
consumption of servers. The work here is in a preliminary stage, but the per-
formance of several of the heuristics, in particular the average flow heuristic, is
very encouraging. More work will be needed in examining this performance.

It is possible to relax the restriction on homogeneity of servers, as in [5] at the
cost of increasing the complexity of the model. We can do this by introducing
multiple job types with different service rates. The problem is that they do
service the same arrival stream, so some sort of load balancing is now required.

A further limitation of the current work, is that it does not consider the
mechanisms by which the powering down of servers take place. Certain long
lasting applications can make this a bit problematic and there has been research
into this problem, see e.g. [3].

The location of the servers here is not taken into account. It could be practical
to select the servers to be powered down in a clever way, such as to minimize
cooling costs. This is not really a limitation of the current work, since the ex-
act server powered down is not considered here. But it does mean future work
could produce significant further improvements. More generally, the gains from
powering down servers are represented in a very linear fashion and really only

260 J. Slegers, N. Thomas, and I. Mitrani

reflect the direct impact on the power consumption of the servers themselves,
rather than including additional benefits from reduced cooling costs etc. This
too offers significant scope for future work.

We can also consider arrival processes that are not Markovian. Although
the formal modelling of these systems is more problematic, it is straightfor-
ward to examine the performance of the heuristics presented here under these
non-Markovian arrival processes using simulation. The exception would be the
optimal static allocation; this is not readily calculated for non-Markovian arrival
processes.

A final, and rather obvious, extension would be to include different job types
for the servers to service. As well as allowing different power down states. These
would reflect the various power down modes in systems, e.g. hibernate, system
shutdown and disk shutdown.

Acknowledgements

The authors would like to thank the organizers of the SPEC International Per-
formance Evaluation Workshop 2008, for the opportunity to present this work.
We would also like to thank the anonymous reviewers for their helpful comments.

This work was carried out as part of the EPSRC funded project Dynamic
Operating Policies in Commercial Hosting Environments.

References

1. Bianchini, R., Rajamony, R.: Power and Energy Management for Server Systems.
Computer 37, 68–74 (2004)

2. Chase, J., Anderson, D., Thakar, P., Vahdat, A., Doyle, R.: Managing Energy
and Server Resources in Hosting Centers. ACM SIGOPS Operating Systems Re-
view 35(5), 103–116 (2001)

3. Chen, G., He, W., Liu, J., Nath, S., Rigas, L., Xiao, L., Zhao, F.: Energy-
Aware Server Provisioning and Load Dispatching for Connection Intensive
Internet Services, Microsoft Research Technical Report, MSR-TR-2007-130,
ftp://ftp.research.microsoft.com/pub/tr/TR-2007-130.pdf

4. Fan, X., Weber, W., Barroso, L.: Power Provisioning for a Warehouse-sized Com-
puter. In: Proceedings of the 34th Annual International Symposium on Computer
Architecture, San Diego CA, June 2007, pp. 13–23 (2007)

5. Heath, T., Diniz, B., Carrera, E., Meira Jr., W., Bianchini, R.: Self-Configuring
Heterogeneous Server Clusters. In: Workshop on Compilers and Operating Systems
for Low Power (2003)

6. Kleinrock, L.: Queueing systems, vol. 1. Wiley Interscience, New York (1975)
7. Mastroleon, L., Bambos, N., Kozyrakis, C., Economou, D.: Autonomic Power Man-

agement Schemes for Internet Servers and Data Centers. In: Global Telecommuni-
cations Conference, GLOBECOM 2005, pp. 943–947. IEEE (2005)

8. Mitrani, I., Chakka, R.: Spectral Expension Solution for a Class of Markov Mod-
els: Application and Comparison with the Matrix-Geometric Method. Performance
Evaluation 23, 241–260 (1995)

ftp://ftp.research.microsoft.com/pub/tr/TR-2007-130.pdf

Dynamic Server Allocation for Power and Performance 261

9. Pinheiro, E., Bianchini, R., Carrera, E., Heath, T.: Dynamic Cluster Reconfigu-
ration for Power and Performance. In: Benini, L., Kandemir, M., Ramanujam, J.
(eds.) Compilers and Operating Systems for Low Power, pp. 75–91 (2003)

10. Slegers, J., Mitrani, I., Thomas, N.: Static and Dynamic Server Allocation in Sys-
tems with On/Off Sources (to appear in special issue of Annals of Operations Re-
search, entitled “Stochastic Performance Models for Resource Allocation in Com-
munication Systems”)

11. Slegers, J., Mitrani, I., Thomas, N.: Optimal Dynamic Server Allocation in Systems
with On/Off Sources. In: Wolter, K. (ed.) EPEW 2007. LNCS, vol. 4748, pp. 186–
199. Springer, Heidelberg (2007)

Workload Characterization of the

SPECpower ssj2008 Benchmark

Larry D. Gray, Anil Kumar, and Harry H. Li

Intel Corporation

Abstract. SPEC has recently released SPECpower ssj2008, the first in-
dustry benchmark which measures performance and power of volume
server class computers using graduated load levels. In this paper, we
present a brief overview and an initial characterization of this benchmark
by measuring the system resource utilization with the aid of processor
monitoring events at graduated load levels and by comparing the sensitiv-
ity of final metric and other related data between various configurations
consisting of hardware changes as well as software changes on Quad Core
Intel Xeon processor based servers. Even though this is early data from
a specific platform and OS, it still validates many expected patterns and
opens exciting new opportunities for researchers to investigate specific
areas as well as in-depth characterization as a next step.1

1 Introduction

December of 2007 brought a significant milestone for SPEC, the Standard Per-
formance Evaluation Corporation, with the release of the industry’s first bench-
mark to measure the power and performance of volume server platforms with an
innovative graduated workload. Formally named SPECpower ssj2008, this new
benchmark measures eleven levels of server loads from zero to 100% of a given
platform’s full capacity to process business transactions with a server side Java
application. Full disclosure reports using this benchmark provide an unprece-
dented amount of new information on the power consumption and performance
of the tested platform.

In this paper we strive to provide some insights into workload behavior and
server resource utilization characteristics of this benchmark above and beyond
the wealth of information included in the now available SPEC provided docu-
mentation cataloged on the SPEC public website [2,3].

The authors have been active members of the SPECpower benchmark develop-
ment team from the outset and therefore are capable of providing valuable insights
on theworkload, the rationale for designdecisions, and the strengths and inevitable
weaknesses inherent in any such product. We share this information to enhance the
understanding of the benchmark and its intended usage. Our intent is that others
will benefit and therefore be more interested in using the benchmark as an evalu-
ation tool across the wide array of studies to which it can apply.
1 This paper is a revised and extended edition of a paper presented on the SPEC

Benchmark workshop in San Francisco 2008 [1].

S. Kounev, I. Gorton, and K. Sachs (Eds.): SIPEW 2008, LNCS 5119, pp. 262–282, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Workload Characterization of the SPECpower ssj2008 Benchmark 263

1.1 A Little History

The SPECpower committee was chartered in January of 2006 to create a bench-
mark that would address the emerging need to measure power consumption and
performance of server class computer systems under application-like loads. The
intersection of performance and power has become an important attribute of
computer systems, sometimes labeled efficiency. A standard method of measur-
ing and reporting both would require a disciplined approach beyond what was
then available on the open market.

The fact that one workload or benchmark could not represent the spectrum of
server usage was generally accepted and therefore the SPECpower committee was
determined to create more than one “benchmark” in more than one application
segment. The committee is and was staffed by engineers and managers from these
companies: AMD, Dell, Fujitsu Siemens Computers, HP, IBM, Intel, and Sun
Microsystems. The manufacturers were assisted by representatives from acad-
emia including the University of California Berkeley, Virginia Polytechnic Insti-
tute and State University, and Lawrence Berkeley National Laboratory. After two
years of constant collaboration, design, coding and extensive testing efforts, the
SPECpower committee released its first benchmark named SPECpower ssj2008
on December 11, 2007 to very positive reviews from industry and trade press [14].

2 SPECpower ssj2008 Overview

2.1 Measuring Power with Performance

This section provides a brief overview of the SPECpower measurement frame-
work described in more detail in the set of documents freely available at the
SPEC public web site on the SPECpower ssj2008 page [3,4,5,6,7,9,10].

For deeper understanding of the design of the benchmark and its essential
elements, refer first the to the SPEC Power and Performance Design Overview
[9,10,11,12,13]. Several challenges are presented by the requirement to measure
power consumption with performance, in particular at multiple load levels.

A measurement methodology was established and then realized by implement-
ing a measurement framework that requires a separate platform to which power
and temperature measurement devices are attached, with the necessary logging
and reporting functions.

The two systems required are the system under test (SUT) and the Control
and Collection System (CCS) [10]. Communications between the two systems is
enabled by a standard Ethernet local area network (LAN).

The addition of a measurement server enables a host of benefits that include
but are not limited to:

1. independence from the workload to enable quick integration of new
workloads,

2. multiples measurements; the ability to manage a number of SUTs and mul-
tiple measurement devices. multiple JVM instances are also supported.

3. low impact to the loads on the SUT for the data consolidation and logging.

264 L.D. Gray, A. Kumar, and H.H. Li

Altogether, the design permits extending the framework from the current
capability to measure a stand-alone server with a single OS, to environments or
topologies with multiple OS images, for instance blade servers and virtualized
servers with workloads appropriate to those environments.

“Any” OS
“Any” OS

ssj_2008
instance(s)
ssj_2008
instance(s)

ssj_2008
director

Power
Analyzer

Linux, Solaris*,
Windows*

Linux, Solaris*,
Windows*

AC Power
Source

Control &
Collect

AC Power

CCS
Control & Collection System

SUT
System Under Test

PTDPTD

Temperature
Sensor

PTDPTD

Intel
Daemon

OSctrD

ccs-log.csv

Fig. 1. Elements of the SPECpower Framework

2.2 The Measurement Framework

To better understand the terminology and characterization data later in this pa-
per, a brief overview of the SPECpower framework software elements is provided.
Figure 1 is a graphic representation of the framework with the interconnections.

On the left side of Figure 1, is the Control and Collect system (or measurement
server). On the right is the SUT where the workload runs. The up arrow on the
right, under the SUT, points to a non-standard element (not provided by SPEC),
the OS counters daemon (OSctrD). Created by Intel, this software implements
the capability to collect resource utilization data from a Windows OS platform,
passing a configurable set of counter data to the CCS for logging, second by
second, along side the power, performance and other essential data items. It is
this additional element of the framework that enables producing the data shown
later in this report.

The ssj 2008 workload runs on a SUT plugged into a power analyzer plugged
into the building’s power infrastructure, measuring power of the entire SUT
platform. This is sometimes described as “watts at the wall”. The power analyzer
is connected to the CCS machine via a data cable where purpose built software,
the PTD (Power and Temperature Daemon) records electrical activity from a
power analyzer, and ambient temperature from a temperature sensor device
placed at the air in-flow to the SUT.

The SPECpower ssj2008 workload uses TCP/IP protocol to pass time, per-
formance and status data to the CCS system which then consolidates that with
power and temperature, and in this case the OS counters, logging all together
into one record in a comma separated file.

Workload Characterization of the SPECpower ssj2008 Benchmark 265

2.3 A Graduated Workload

The notion of a graduated workload was inspired by the advent of processor
power management technologies on volume server platforms, which are most
effective at low loads and usually required to operate without a negative perfor-
mance impact.

All this is driven by the global need to conserve energy, reduce carbon foot-
prints, and the general movement to be more green. Platform power consumption
has become a competitive differentiator for the system manufacturers. Add then
that it has become widely recognized that most (commercial) data-center servers
generally run at low loads with resources underutilized except during periods of
peak business activity – which will vary widely for various types of businesses
and geographies. Since there is no “typical” load level, the graduated load was
conceived to assess power management across what has come to be known as
the load line. The benchmark reports the power consumption and the perfor-
mance at each load level, allowing the reader to reasonably match their usage
and determine power usage for that platform.

Platform Capacity Adjustment. Systems of widely different capacity must
be fairly measured, so a method was conceived to determine the full transaction
throughput capacity of a given system, and then increment the workload gra-
dations accordingly. A benchmark run begins with 3 or more calibration levels
where an ungated stream of transactions is presented to the application. The
calibration workloads are unrealistic but they serve to determine the full perfor-
mance potential of the system – with the SPECpower ssj2008 application and
transaction mix.

The calibration throughput is used to set a throughput target for the 100%
load level. The other load levels are then graduated percentages of the calibrated
target load. In the normal case, the levels are increments of 10%. Fewer or more
levels are configurable.

It is important, when interpreting data in this paper and from the disclo-
sure reports of SPECpower ssj2008 that the load levels labeled as percentages
are a percent of target calibrated throughput. It is a common misconception that
gradations are governed by processor utilization. Processor (or CPU) utilization
is an outcome of the benchmark and considered to be unique to a given plat-
form. Since there are a number of vagaries and sometimes gross differences to
the meaning of CPU utilization from one architecture to another, this point is
emphasized. (We encourage someone to use this as a topic a future paper).

Measurement Intervals. The graduated method loads the system with a
given throughput for a fixed amount of time during which power is measured
every second along with the effective transaction rate at that second. Figure 2
provides a graphic example of second by second transaction throughput across
five levels of transaction load. A compliant run of SPECpower ssj2008 executes
10 load levels plus the state known as active idle.

Active Idle. Idle is generally the state when the system is running no applica-
tions nor performing any operating system management tasks. CPU utilization

266 L.D. Gray, A. Kumar, and H.H. Li

time in seconds

Graduated Load Example

average ssj_ops per second

100%

ssj_ops at 80% target load

60%

40%

20% active idle

60level30level20level10level level 04 level 05

time in secondstime in seconds

Graduated Load Example

average ssj_ops per second
op

er
at

io
ns

 p
er

 s
ec

on
d

100%

ssj_ops at 80% target load

60%

40%

20% active idle

60level30level20level10level level 04 level 05

Fig. 2. Graduated Load Example

is zero. We could label this state OS idle. The duration of idle states can vary
from fractions of seconds to minutes. Modern operating systems run many asyn-
chronous background tasks and therefore most servers are never totally idle for
long periods. Active idle is a SPEC defined state where an application is running
and no transactions are incoming or in process; the system is ready to quickly
respond to any incoming transactions. Given that servers are usually operating
24 x 7 they are also ready to accept transactions therefore active idle is the
most common operating state. In this benchmark, active idle is handled and
measured virtually the same as the other 10 load levels, except no transactions
are scheduled.

Workload States and State Changes. Accurate, consistent and repeatable
measurement of performance and power together requires that there be mech-
anisms to assure that a period known as the measurement interval is carefully
defined, delineated and controlled. This control is implemented through the def-
inition of states which identify the various phases of the workload in the detailed
CCS log file. In the case of a graduated workload, the load type and level number
is included. These states and the change rules are built in to the ssj2008 code
and passed to the director along with the per second average performance, time
stamps and other meta data.

There are four distinct phases of any given load level:

1. Inter is a period between load levels. This method creates a break between
load levels that eases post run visual analysis.

2. Ramp up (pre-measurement) is a period of time that allows the application
to reach a level of processing that will continue for the duration.

Workload Characterization of the SPECpower ssj2008 Benchmark 267

pr
e-

m
ea

su
re

m
en

t

load level

240
seconds

30
secs

op
er

at
io

ns
 p

er
 s

ec
on

d

time

po
st

-m
ea

su
re

m
en

t

de
la

y
be

tw
ee

n
lo

ad
 le

ve
l

10
secs

de
la

y
be

tw
ee

n
lo

ad
 le

ve
l

measurement
interval

measurement
interval

”pots“”og“
power measurement

30
secs

10
secs

not to scale

Fig. 3. State Changes in a Load Level

3. Recording is where data is collected and summarized in post-processing steps.
This is the “measurement interval”.

4. Ramp down (post-measurement) is a period of time where the application
will continue to process transactions till the very end of the load level.

Following ramp down, the cycle begins again with another inter level or if all
configured levels have been completed, the workload can terminate normally.
State changes for one workload level are illustrated in the chart in Figure 3. Note
that power is measured continuously to enable detailed analysis. For reporting
purpose in benchmark disclosures, only the average power in the measurement
interval is used. Also all these intervals are long enough to provide sufficient
settle time for consistent power and performance measurements.

3 Server Resource Utilization

3.1 Overview

The SPECpower ssj2008 benchmark emulates a server side Java transaction
processing application. It exercises processors, processor caches, the memory
hierarchy, implementations of the JVM (Java Virtual Machine), JIT (Just-In-
Time) compiler, garbage collection, threads and some aspects of the operating
system. A Java application was chosen for the very important advantage of cross
operating system portability. The opportunity to leverage existing code from the
SPECjbb2005 benchmark was irresistible.

Base code and transaction types [16] are from SPECjbb2005, but many sub-
stantive changes make the two not comparable. Some notable differences are a
modified transaction mix, transaction scheduling and arrival method, calibration
to seek the platform peak transaction capacity, altered throughput accounting,

268 L.D. Gray, A. Kumar, and H.H. Li

data collection via a network with TCP/IP, additional logging that increases disk
I/O, plus other less significant changes. Overall, even though ssj2008 is derived
from SPECjbb2005, it is very different. While running, the application makes
some use of the network and does minimal disk I/O. Actual data rates are shown
in a later section. With the arrival of multi-core processors in symmetric multi-
processor systems, a high degree of scalability was a top benchmark design goal.
It is expected that the benchmark will be run on a very wide range of low end
and mid-range servers which span the space from a single socket single proces-
sor core (uni-processor servers) up to servers that support multiple processors
(SMP or symmetric multiprocessor) where each processor can incorporate 1, 2,
4 and likely more processing cores – then some implementations will support
SMT (Simultaneous Multi-threading).

Conscious design decisions were made such that additional disks or network
interfaces would not be necessary with increases in available processing capacity.
The scalability of the benchmark is an incredibly positive attribute when set-
ting out to measure power and the performance of basic system infrastructure
(processors, chipset, memory, fans, power supply, etc.) across platforms with a
very broad range of transaction processing capacity.

3.2 Resource Usage and Platform Power Consumption

To the above that we also understand that platform power consumption under
varied loads is largely driven by the power requirements of the processors (a
generalization that applies to most platforms available today) which changes
with the applied load. This may seem counter-intuitive since memory and disks
are both subject to dynamic and random access.

Memory power consumption does change with load, however, as a percentage
of total platform power, the range from idle to full load might be only 1-2%
of platform power. Use this information only as a guide since memory designs,
types, and densities can be quite different in their behavior from one to another.
Modern high density disk drives show similar behavior. Once spun up, power
changes are small with usage, again relative to total platform power. Network
interface cards (NICs) follow the same pattern that when enabled, with a LAN
cable plugged in, a NIC is consuming power very near its maximum and very
small power increase is seen with higher traffic, again on the order of 1% or
less of total platform power. As a caveat, it is important to note that the ob-
servations above apply to the types of memory, disks and NICs found in high
volume platforms common to x86 servers. Exhaustive studies of peripheral and
component power consumption are yet to be completed.

4 SPECpower ssj2008 Metric Definition

4.1 The Primary Metric

The primary metric for SPECpower ssj2008 is overall ssj ops/watt which is ratio
of aggregated ssj ops at all 11 load level and aggregated average watts at all 11
load levels which includes active idle also.

Workload Characterization of the SPECpower ssj2008 Benchmark 269

4.2 Unprecedented Data in Full Disclosure Report

The SPECpower ssj2008 Full Disclosure Report (FDR) presents and abundance
of data on performance, power as well as detailed configuration data. Table 1
has been copied from FDR of SPECpower ssj2008 publication [15] and highlights
important data fields [8] and values.

In Table 1 above, the ssj ops column, first row, is ssj ops@100%. The fourth
and fifth columns contain average power (in watts) and a performance to power
ratio at each level. The “primary” metric is highlighted in the last row. Following
page one of the FDR, are several more pages with important configuration,
environment and electrical data from the benchmark run.

Table 1. Performance and Power Data

Performance Power
Performance to
Power Ratio

Target Actual
ssj ops

Average
Load Load Power (W)

100% 99,10% 220.306 276 799
90% 90,40% 200.860 269 746
80% 79,50% 176.684 261 677
70% 70,30% 156.344 254 616
60% 59,60% 132.525 245 541
50% 49,60% 110.222 237 465
40% 40,20% 89.388 229 390
30% 30,10% 66.875 221 302
20% 19,90% 44.157 213 207
10% 10,20% 22.649 206 110

Active Idle 0 198 0
�

ssj ops /
�

power = 468

5 Platform Hardware and Software Details

5.1 Platform Configuration Details

To understand and characterize this benchmark, we used an Intel Xeon based,
2 socket Intel “White Box” server with the following configuration described in
Table 2.

Load levels of 120 seconds were used to reduce total run time as we have
observed that measurements from shorter load levels are reasonably consistent
with that of 240 sec load levels. Also note that we do not use SPECPower ssj2008
metrics, since the measurements in this report are largely non-compliant; that
is, they can not be published along side full disclosure reports. Data herein
is intended for academic use only. The measurements and observations in the
following sections are in large part exclusive to the Microsoft Windows Server
operating environment. Disk write frequency and rates are largely governed by
policies of the OS used. Platforms other than those used in this study may also
affect the resource utilization characteristics.

270 L.D. Gray, A. Kumar, and H.H. Li

Table 2. Platform Hardware and Software Details

SUT Intel “White Box”

HW Dual and Quad Core Intel Xeon 2.0 & 3.0 GHz
Supermicro X7DB8/ Main Board, Super Micro 5000P
4x 2GB FBDIMMs
1x 700W PSU
5U Tower Platform

OS Microsoft Windows Server 2003 64 bit

- Power Options Server Balanced Processor Power and Performance

JVM JVM: BEA JRockit P27.4.0 64 bit

- Options JVM Command Line similar to published results

Sampling Rates Power: 1 second (average from meter)

SPECpower ssj2008 setup
SSJ Director on SUT

Load levels 120 seconds

6 SPECpower ssj2008 Characterization Data

6.1 SSJ 2008– per JVM Instance

Code Footprint Size: Each SSJ (JVM) instance has a code size of ∼1.5 MByte;
when totaling the size of all methods that have been JITed and optimized.

Data Footprint Size: Each warehouse thread has ∼50 MBytes of long lived
database objects and produces ∼8Kbytes of short lived transient objects per
SSJ transaction. The overall data footprint depends on the number of threads
(warehouses) and maximum throughput produced.

Java Heap Size and Sizing: The Java heap size is user configurable where the
best size is dependent upon available memory and the number of JVMs chosen
for a particular run. An optimal heap size is necessary for optimal performance.
A heap size too big could cause memory swapping (total heap size > RAM).
Too small a heap will incur a performance penalty due to frequent Garbage Col-
lections (GC). Overall, due to the nature of the Java heap, an application can
exercise any amount of memory and a user could measure the energy consump-
tion impact, but the performance component only benefits to a certain extent.
The optimal physical memory size is throughput capacity - processing capability
- dependent and does vary by platform and its hardware expandability. As an
example, for Quad-Core Intel Xeon based Dual Processor systems, ∼8GB RAM
is optimal when running SPECpower ssj 2008.

6.2 Processor Utilization

Figure 4 show CPU % utilization tracking closely with the transaction loads on
the Intel Core 2 architecture. On other micro-architectures it will vary (SMT
etc.). Load level targets are set to be percentages of ssj ops@calibrated. Users
must be aware that CPU utilization is no part of the benchmark.

Workload Characterization of the SPECpower ssj2008 Benchmark 271

Average second by second ssj ops are exhibiting the expected variability
within a load level because the inter-arrival time of transactions is modeled
with a negative exponential distribution to better simulate random arrival of
work.

6.3 Power and Processor Utilization

Figure 5 shows that Power consumption varies with load. Also the variability of
transaction throughput is being reflected in power consumption changes (watts).

6.4 Power, ssj ops, and Processor Utilization

Plotted points in Figure 6 shows that ssj ops, Power and CPU % utilization are
changing together – showing a distinc relationship one to the other.

6.5 % Time in C1 State

Figure 7 shows that % time in C1 state is the inverse of CPU % utilization at
all load levels. Time in C1 state contributes to power saving which varies with
architecture, OS and policies. For example Intel EIST enabled in BIOS will result
in more power saving at lower utilizations. C states are lower processor power
states. Their specific definition is architecture and implementation dependent.

6.6 Memory Utilization

Data in Figure 8 has been collected using typical tuning (Xmx==Xms) where
Java heap allocated remains same throughout the run. As a result committed
memory in use remains constant at all load levels including active idle.

6.7 Network I/O

Data in Figure 9 indicates ∼1500 Bytes/sec of network I/O at all load levels
including active idle. As expected network traffic is similar at all load levels and
does not track load. Most of the Network I/O is from per sec request/response
between Control & Collect (CCS) and SSJ 2008 Director.

6.8 Disk I/O

Disk I/O in Figure 10 shows regular bursts of ∼140Kbyte writes. On an average
there is ∼3.3Kbytes/sec of Disk I/O at all load levels. Most disk writes are
related to SSJ 2008 logging. Disk reads average is zero.

6.9 Basic System Events

Figure 11 shows interrupts rates of ∼700 per second at all load levels including
active idle. Context switches are ∼800 /sec at higher utilization levels and decline
at lower utilization while dropping to ∼400 at active idle. These events are OS
and platform dependent. Since these events are showing strange patterns, more
investigation is needed.

272 L.D. Gray, A. Kumar, and H.H. Li

Transactions and Processor Utilization

0

40000

80000

120000

160000

200000

240000

152 352 552 752 952 1152 1352 1552 1752 1952 2152
seconds

ss
j o

ps

0

10

20

30

40

50

60

70

80

90

100

110

Pe
rc

en
t

avg txs
% CPU

Fig. 4. CPU % Utilization

Power and Processor Utilization

0

50

100

150

200

250

300

350

400

450

152 352 552 752 952 1152 1352 1552 1752 1952 2152

seconds

w
at

ts

0

20

40

60

80

100

120

Pe
rc

en
t

watts

% CPU

Fig. 5. Power and CPU % Utilization

Transactions, Power and Processor Utilization

0

40000

80000

120000

160000

200000

240000

152 352 552 752 952 1152 1352 1552 1752 1952 2152
seconds

ss
j o

ps

0

50

100

150

200

250

300

350

400

450

Pe
rc

en
t

avg txs

% CPU

watts

Fig. 6. Power, ssj ops, and CPU % Uti-
lization

C1 state

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

240000

260000

152 352 552 752 952 1152 1352 1552 1752 1952 2152
seconds

ss
j_

op
s

0

10

20

30

40

50

60

70

80

90

100

110

Pe
rc

en
t

avg txs

% CPU

total % C1 time

Fig. 7. % of Time in C1 State

Memory Consumption

0

10

20

30

40

50

60

70

80

90

100

110

150 350 550 750 950 1150 1350 1550 1750 1950 2150
seconds

%
 p

ro
ce

ss
or

 u
til

iz
at

io
n

Total % Processor Time
mem % Committed Bytes in Use

Fig. 8. Memory Utilization

Network I/O

0

20

40

60

80

100

120

1 201 401 601 801 1001 1201 1401 1601 1801 2001
seconds

%
 p

ro
ce

ss
or

 u
til

iz
at

io
n

0

500

1000

1500

2000

2500

3000

3500

4000

B
yt

es
 p

er
 S

ec

CPU %
NIC Bytes Total/sec

Fig. 9. Network I/O

Workload Characterization of the SPECpower ssj2008 Benchmark 273

Physical Disk I/O

0

10

20

30

40

50

60

70

80

90

100

110

152 352 552 752 952 1152 1352 1552 1752 1952 2152

seconds

%
 p

ro
ce

ss
or

 u
til

iz
at

io
n

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

B
yt

es
 p

er
 S

ec

% Processor Time
Disk Write Bytes/sec

Fig. 10. Disk I/O

Context Switches and Interrrupts

0

10

20

30

40

50

60

70

80

90

100

110

152 352 552 752 952 1152 1352 1552 1752 1952 2152
seconds

%
 p

ro
ce

ss
or

 u
til

iz
at

io
n

0

200

400

600

800

1,000

1,200

1,400

pe
r s

ec
on

d

% Processor Time
Context Switches/sec
Interrupts/sec

Fig. 11. Basic System Events

Comparing JVM with and without 'options'

0

50,000

100,000

150,000

200,000

250,000

300,000

cal 1 cal 2 cal 3 cal T 100 90 80 70 60 50 40 30 20 10 0
load level

ss
j_

op
s

200

250

300

350

400

450

w
at

ts

NoOpt avg-txs
All avg-txs
NoOpt Watts
All Watts

Fig. 12. Impact of JVM Options

Comparing Dual Core and Quad Core Processors

0

100

200

300

400

500

600

700

800

900

0 50,000 100,000 150,000 200,000 250,000

ssj_ops

ss
j_

op
s/

w
at

t

Dual Core Intel Xeon
Quad Core Intel Xeon

Fig. 13. Processor Scaling

Comparing Frequency on Similar Processors

0

100

200

300

400

500

600

700

800

900

1000

0 50,000 100,000 150,000 200,000 250,000 300,000

ssj_ops

ss
j_

op
s/

w
at

t

Quad Core Intel Xeon 2.0 GHz
Quad Core Intel Xeon 3.0 GHz

Fig. 14. Frequency Scaling

Power and Performance Scaling Across Generations

0

100

200

300

400

500

600

700

800

900

0 40,000 80,000 120,000 160,000 200,000 240,000
ssj_ops

ss
j_

op
s/

w
at

t

Single Core Intel Xeon 3.6GHz

Dual Core Intel Xeon 3.0GHz

Qual Core Intel Xeon 2.0GHz

Fig. 15. Platform Generation Scaling

274 L.D. Gray, A. Kumar, and H.H. Li

6.10 Impact of JVM Optimizations

Selection of JVM options can have significant impact on performance. In this
experiment, we compared “no options” to the set of “best known JVM options”.
Figure 12 shows the difference in performance and power. When using no JVM
options (default options), performance dropped by ∼50% while power reduced
by 0 to 3%. Please note that any findings from these experiments are dependent
on the JVM and its options. JAVAOPTIONS SSJ=““ (None, default heap and
optimizations)
JAVAOPTIONS SSJ=“-Xms3000m -Xmx3000m -Xns2400m –XXlazyUnlocking
-Xgc:genpar -XXcallprofiling -XXaggressive -XXlargePages
-XXtlasize:min=12k,preferred=1024k”

6.11 Processor Scaling

Figure 13 shows that when ssj ops are plotted on the x-axis, the additional
capacity of Quad Core Intel Xeon 2.0GHz/2x4MB L2 compared to Dual Core
Intel Xeon 2.0GHz/4MB L2 is clearly evident.

Table 3. Processor Scaling

Dual Core to Quad Corescaling
%increase

Intel Xeon processors

ssj ops@100% 77%

Power@100% 1%

Table 3 shows that when comparing these two types of processors, perfor-
mance improves drastically - ssj ops@100% increased by ∼77% while power con-
sumption@100% increases by only ∼1%.

6.12 Frequency Scaling

To view the impact of frequency scaling, in Figure 14, we compared Quad Core
Intel Xeon (2x6MB L2) running at 2.0GHz and 3.0GHz respectively. Table 4
shows that for 2.0GHz/3.0GHz Quad Core Intel Xeon / 2x6MB L2,
ssj ops@100% improves by ∼24% while power consumption@100% increases by
∼10%. Overall ssj ops/Watt improves by ∼76%.

Table 4. Frequency Scaling

Frequency Scaling
%increase

Intel Xeon QuadCore processors

2.0 GHz to 3.0 GHz 50%

ssj ops@100% 24%

Power@100% 10%

Workload Characterization of the SPECpower ssj2008 Benchmark 275

6.13 Platform Generation Scaling

Often a new generation of platforms delivers more performance, consumes less
power and exhibits overall better energy efficiency. We measured three distinct
generations of Intel platforms starting from the year 2005. Figure 15 compares
the results from three publications [15]: Single Core Intel Xeon 3.6GHz/1M L2
with HT, Dual Core Intel Xeon 3.0GHz/4M L2 and Quad Core Intel Xeon
2.0GHz/2x4M L2. Data in Table 5 clearly shows that latest generation has im-
proved ssj ops@100% by >4x while reducing power@100% by ∼10% resulting in
overall ssj ops/watt improvement of >4x.

Table 5. Platform Generation Scaling

Processor Performance
ssj ops@100%

Power(watts)
@100%

Overall
ssj ops/watt

Single Core Intel Xeon 3.6GHz 40,852 336 87

Dual Core Intel Xeon 3.0GHz 163,768 291 338

Qual Core Intel Xeon 2.0GHz 220,306 276 468

7 Benchmark as Load Generating Tool

This benchmark has many built-in capabilities which can be used to create
various system utilization characteristics. A note of caution is that such changes
make the run non-compliant but nonetheless they are very useful in creating
different use scenarios. In this section we have listed many such characteristics
which can be set just by modifying the file “SPECpower ssj EXPERT.props” as
well as shared some results and conclusion from some experiments following this
methodology.

7.1 Impact of Different Batch Sizes

A batch is “fine grained transactions contained in each batch of high-level trans-
actions” where both default and compliant size is 1000. This property can be
set by changing “input.scheduler.batch size=1000”. For a given throughput, a
smaller batch size will result in smaller size of batches arriving more frequently
and vice versa for large batch size. This feature is very interesting for under-
standing the impact of complex power saving algorithms. Figure 16 shows the
impact on ssj ops/watt for different batch sizes of 1, 10, 100, 1000 and 10,000
and 100,000.

Above data indicates that a batch size from 10 to 10,000 is well within narrow
range while either small batch size of 1 or a very large size >10,000 are showing
expected behavior of being out of range. A very small batch size results in very
frequent arrival of transactions denying power saving opportunities while a very
large batch size results in arrival of large batches at very infrequent interval
leaving lots of opportunity to transition into sleep states. Also the large batch
size makes it hard to hit the load level target because of granularity.

276 L.D. Gray, A. Kumar, and H.H. Li

Impact from different batch sizes

0

100

200

300

400

500

600

100 90 80 70 60 50 40 30 20 10 aidle
Load level

ss
j_

op
s/

w
at

t

B=1
B=10
B=100
B=1000
B=10000
B=100000

Fig. 16. Impact from Different Batch
Sizes

Impact from different Transaction mix

0

100

200

300

400

500

600

700

800

900

1000

100 90 80 70 60 50 40 30 20 10

Load level

op
s/

w
at

t

ssj_mix
different_mix

Fig. 17. Impact from Different Transac-
tion Mix

7.2 Impact of Different Transaction Mix

There are six different type of Java transactions which have a fixed probability
distribution. For compliant runs, the transaction mix is following:

input.transaction mix.new order = 10
input.transaction mix.payment = 10
input.transaction mix.order status = 1
input.transaction mix.delivery = 1
input.transaction mix.stock level = 1
input.transaction mix.cust report = 10

Each transaction have different characteristic and as a result changing this
mix stresses a system differently. In our experiment we have compared the com-
pliant settings with the alternate mix as below while all others are same as above:

input.transaction mix.new order = 15
input.transaction mix.cust report = 5

Since we changed the transaction mix and hence the average instruction ex-
ecuted per ops are also changed resulting in a change in ops/watt. For more
detailed study, this transaction mix could be changed more significantly to under-
stand the impact on total average power at different load levels and also to repli-
cate if some application are closer to different transaction mix in characteristic.

7.3 Impact of More Threads

This benchmark tests the system where number of threads (each warehouse
is one thread) equals number of logical cores on that system. Property in-
put.load level.number warehouses was set to test two configurations of 1 thread/
logical core vs. 2 threads/logical core to understand the impact on performance
and power consumption. When running 2 threads/logical core, ssj ops@100%
dropped by ∼2%. Figure 18 shows that ssj ops/watt is similar at lower load

Workload Characterization of the SPECpower ssj2008 Benchmark 277

Impact of more threads

0

100

200

300

400

500

600

100 90 80 70 60 50 40 30 20 10 aidle
Load level

ss
j_

op
s/

w
at

t

1x threads
2x threads

Fig. 18. Impact of More Threads

levels while a bit lower at higher load levels when comparing 1 thread/logical
core vs. 2 threads/logical core.

A further study of increasing the number of threads/logical core beyond 2
will be very interesting to understand the impact of more context switching on
power and performance.

7.4 Single Queue vs. Dedicated Queue

The processing queue of applications for handling incoming requests could be
categories in two broad categories: single queue vs. multiple queues. For compli-
ant runs, this benchmark deploys multiple queues (one queue for each warehouse
called dedicated scheduler queue) as that type of approach is more scalable to
large systems, but, using the property “input.scheduler.single queue” to “=true”
a characteristic of application using a single queue for that JVM instance can be
tested. We have compared the power and performance for single queue vs. dedi-
cated scheduler queues. Figures 19 and 20 have power and performance data for

Power Consumption

150

170

190

210

230

250

270

290

100 90 80 70 60 50 40 30 20 10 aidle
Load level

A
vg

. W
at

t

Dedicated Queue
Single Queue

Fig. 19. Power Consumption for Dedi-
cated Queue vs. Single Queue

Performance / watt

0

100

200

300

400

500

600

100 90 80 70 60 50 40 30 20 10 aidle
Load level

ss
j_

op
s

/ w
at

t

Dedicated Queue
Single Queue

Fig. 20. Performance/Watt for Dedi-
cated Queue vs. Single Queue

278 L.D. Gray, A. Kumar, and H.H. Li

these two configurations. Since single scheduler queue implementation has more
lock contention, it produces ∼6% less ssj ops@100% compared.

Figure 19 shows very interesting data that single queue implementation con-
sumes more power at lower load levels while dedicated queue consumes more
power at higher load levels. A note of caution here as this unique phenom-
ena could be h/w and s/w stack configuration specific and not generic in nature.
Figure 20 shows that overall performance/watt at all load levels is better for ded-
icated scheduler queue as it has less lock contention and producing more ssj ops.

7.5 Numerous Other Experiments

There are many other settings which we described in brief below which can be
set to simulate characteristics of various applications. There are:

input.load level.target max throughput = #
A target throughput can be given by setting this property. This is very useful

when a user want to evaluate various h/w and s/w settings while executing same
amount of transactions at load level for different settings.

input.load level.throughput sequence = ####

Rather than executing fixed load levels, a user can set specific throughput at
each load level. Alternately a user can set input.load level.percentage sequence
to set target in terms of % load level rather than throughput. Both settings are
excellent tool to let a user test impact of h/w and s/w settings while executing
same amount of transactions.

input.override itemtable size = 20000

This setting decides the itemtable size which impacts the data footprint of
each warehouse which is at default value around 25MB/warehouse. A larger
data footprint will put more pressure on memory sub-system of a platform.

input.warehouse population = 60

This setting decides the active population inside a warehouse and increasing
this results in lot more contention on objects.

input.scheduler.log arrival rates = false

When set to true, it enables logging of various time points of a batch. It
logs arrival time, wait time by a batch in the queue, total response time for
batch (defined as wait time in queue + execution time of a batch). This also
slightly increases the I/O activity. More important is that at various load levels
throughput just indicates the given throughput while response time measure the
real response time of a batch and could help in testing and tuning of various ar-
chitecture features which will show variation in response time at a load level even

Workload Characterization of the SPECpower ssj2008 Benchmark 279

when throughput remains similar. More understanding of variation in response
time will make this logging data extremely useful.

In our evaluation, this benchmark provides unprecedented amount of flexi-
bility to simulate various characteristics for research purposes. All these built-
in capabilities provides excellent mechanism to evaluate and test future power
saving algorithms and settings at OS and driver level as well as at hardware
components level including processors and chipsets.

8 System Configuration Considerations

The SPECpower ssj2008 benchmark metrics have two primary components: per-
formance (ssj ops) and power consumption (average Watts). In this section, soft-
ware and hardware choices are listed that may impact performance, power or
both.

8.1 Performance Factors

The following factors can have a significant impact on performance with un-
known impact to power consumption.

Java Virtual Machine (JVM). Different JVMs will deliver different
performance.

JVM Parameters. A JVM can run by default (no options) but very likely will
not deliver optimal performance. To find parameters for optimal performance,
one can search published results at SPEC website or otherwise will need to find
their own best tuning parameters for a JVM.

Multiple SSJ Instances. If a system has large number of logical cores, often
increasing the number of SSJ instances with each JVM instance at no more than
∼8 warehouse threads results in better performance.

Affinity of SSJ Instances. When running multiple SSJ instances, affinitizing
them to shared caches or each socket or each NUMA node results in better
performance.

HW and OS Settings. Some HW settings like enabling or disabling features
in BIOS or OS settings and use of large pages can result in better performance.

8.2 Power Factors

The following factors can impact power consumption significantly while mini-
mally impacting performance. They are provided here for awareness purposes.
Systems vary widely with options; consult the manufacturer’s documentation.

280 L.D. Gray, A. Kumar, and H.H. Li

BIOS Power Management Options. Many systems provide BIOS options
for power management. The best choice of options depends on your priorities.
It is wise to check the BIOS options since the best setting may or many not be
enabled by default.

One such power management option on Intel processor based systems is called
“Intel EIST”. Another is “C states” or C1. Both should be enabled if your
objective is to reduce power consumption.

Fan Speed Control in BIOS. Fans consume significant amount of power. Se-
lecting optimal settings for fan speed control, when available, can reduce power
consumption without performance impact. In some cases if fan speed is drasti-
cally reduced, it could lead to lower performance due to system level thermal
throttling.

OS Power Management. Most operating systems have some power man-
agement settings. With Microsoft Windows Server 2003 for example, choosing
“power options” from the control panel and then the option “balanced power and
server performance” will conserver power without severe impact on performance.

Power Supplies (PSUs). Many systems are ordered with optional redundant
power supplies. Reducing the number of power supplies (without going below
the minimum needed) will result in lower power consumption.

Memory Size and Performance. The most important factor in this category
is total system RAM size and configuration. The platform configuration is the
primary determinant of power consumption. Memory configuration can have
following impact:

As RAM size is increased, both performance and power consumption will
increase. Performance will increase (with associated heap size adjustments) to
some limit up to the optimal amount of RAM. If RAM size is beyond the optimal
size, there may be no measurable increase in performance but power consumption
will increase with the number (and type of) DIMMs. RAM configuration or
slot placement can have an impact on performance if the platform supports
more than one memory channel and memory interleaving which can improve
performance. Consult system documentation.

9 Conclusions

The SPECpower ssj2008 benchmark and the associated Full Disclosure Reports
present an unprecedented amount of data on the power consumption and perfor-
mance of server systems across the graduated load levels. The benchmark frame-
work, with the power data capture from the Power and Temperature Daemon
combined with the OS counters collection daemon, with information captured
by the logging capability in CCS and SSJ makes this benchmark a powerful and
capable toolset for new areas of behavioral data collection exposing new fields
of systems analysis.

Workload Characterization of the SPECpower ssj2008 Benchmark 281

Based on the information presented in this paper, we observe that most system
resource utilizations are following the expected patterns. Processor Utilization
follows the load line for Intel Core 2 based platforms (note that this is archi-
tecture dependent and CPU utilization is no part of the benchmark). Power
consumption tracks the transaction load. % time in C1 state is inversely propor-
tional to processor utilization at each load level. When the min and max heap
sizes are the same, memory committed is constant across load line. Disk I/O has
regular bursts of ∼140K byte writes with overall average of ∼3.3K bytes/sec for
all load levels while disk reads are none. Network I/O is ∼1.5K bytes/sec and
is almost constant across load line. The basic OS events interrupts and context
switches/sec have some unique behavior which requires further investigation.

Experiments using different JVM options, processor scaling, frequency scal-
ing and platform generation scaling show that primary metric and associated
data for SPECpower ssj2008 fairly reflect configurations and OS settings for
performance, power and overall ssj ops/Watt. All these results are specific to
the platform and OS measured. We expect similar data from different architec-
tures and OS(s) will be very valuable. This initial characterization is just a first
look and more measurements are required to continue in-depth characterization.

In summary, we are just getting started!

Acknowledgment

Special thanks to Christopher B. Jorgensen, a graduate student intern from
Portland State University, for multiple series of measurements collecting the bulk
of the data shown in this paper. Many thanks to Kai Sach from TU Darmstadt
for typesetting this paper in LaTeX2e format and other suggestions to improve
the format and appearance.

Intel and Xeon is a trademark or registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries. SPEC and the bench-
mark names are trademarks of the Standard Performance Evaluation Corpora-
tion. Other names and brands may be claimed as the property of others.

References

1. Gray, L., Kumar, A., Li, H.: Characterization of SPECpower ssj2008 Benchmark.
In: SPEC Benchmark Workshop 2008 (2008)

2. SPEC, http://www.spec.org
3. SPECpower ssj2008,

http://www.spec.org/power ssj2008
4. SPECpower ssj2008 User Guide, http://www.spec.org/power ssj2008/docs/

SPECpower ssj2008-User Guide.pdf
5. SPECpower ssj2008 Hardware Setup Guide, http://www.spec.org/power

ssj2008/docs/SPECpower ssj2008-Hardware Setup Guide.pdf
6. SPECpower ssj2008 FAQ,

http://www.spec.org/power ssj2008/docs/SPECpower ssj2008-FAQ.html

http://www.spec.org
http://www.spec.org/power_ssj2008
http://www.spec.org/power_ssj2008/docs/
SPECpower_ssj2008-User_Guide.pdf
http://www.spec.org/power_
ssj2008/docs/SPECpower_ssj2008-Hardware_Setup_Guide.pdf
http://www.spec.org/power_ssj2008/docs/SPECpower_ssj2008-FAQ.html

282 L.D. Gray, A. Kumar, and H.H. Li

7. SPECpower ssj2008 Run and Reporting rules,
http://www.spec.org/power ssj2008/docs/SPECpower ssj2008-Run Reporting
Rules.pdf

8. SPECpower ssj2008 Result File Fields,
http://www.spec.org/power ssj2008/docs/SPECpower ssj2008-Result File
Fields.html

9. SPECpower ssj2008 Design Overview, http://www.spec.org/power ssj2008/
docs/SPECpower ssj2008-Design overview.pdf

10. SPECpower ssj2008 CCS Design, http://www.spec.org/power ssj2008/docs/
SPECpower ssj2008-Design ccs.pdf

11. SPECpower ssj2008 PTD Design, http://www.spec.org/power ssj2008/docs/
SPECpower ssj2008-Design ptd.pdf

12. SPECpower ssj2008 SSJ Design, http://www.spec.org/power ssj2008/docs/
SPECpower ssj2008-Design ssj.pdf

13. SPEC Power and Performance Methodology,
http://www.spec.org/power ssj2008/docs/SPECpower-Methodology.pdf

14. SPECpower ssj2008 Release, http://www.spec.org/power ssj2008/press/
SPECpower ssj2008-Press%20Release.html

15. SPECpower ssj2008 Intel publication, www.spec.org/power ssj2008/results/
res2007q4/power ssj2008-20071129-00015.html
www.spec.org/power ssj2008/results/res2007q4/power ssj2008-20071129-
00016.html
www.spec.org/power ssj2008/results/res2007q4/power ssj2008-20071129-
00017.html

16. Morin, R., Kumar, A., Ilyina, E.: A multi-level comparative performance charac-
terization of SPECjbb 2005 versus SPECjbb 2000. In: Proceedings of the IEEE
International Workload Characterization Symposium, 2005, pp. 67–75 (2005)

17. BEA JRockit 6 P27.4.0 JDK,
http://dev2dev.bea.com/jrockit/releaseupdate.html

18. BEA JRockit Command Line Reference,
http://edocs.bea.com/jrockit/jrdocs/refman/index.html

http://www.spec.org/power_ssj2008/docs/SPECpower_ssj2008-Run_Reporting_
Rules.pdf
http://www.spec.org/power_ssj2008/docs/SPECpower_ssj2008-Result_File_
Fields.html
http://www.spec.org/power_ssj2008/
docs/SPECpower_ssj2008-Design_overview.pdf
http://www.spec.org/power_ssj2008/docs/
SPECpower_ssj2008-Design_ccs.pdf
http://www.spec.org/power_ssj2008/docs/
SPECpower_ssj2008-Design_ptd.pdf
http://www.spec.org/power_ssj2008/docs/
SPECpower_ssj2008-Design_ssj.pdf
http://www.spec.org/power_ssj2008/docs/SPECpower-Methodology.pdf
http://www.spec.org/power_ssj2008/press/
SPECpower_ssj2008-Press%20Release.html
www.spec.org/power_ssj2008/results/
res2007q4/power_ssj2008-20071129-00015.html
www.spec.org/power_ssj2008/results/res2007q4/power_ssj2008-20071129-
00016.html
www.spec.org/power_ssj2008/results/res2007q4/power_ssj2008-20071129-
00017.html
http://dev2dev.bea.com/jrockit/releaseupdate.html
http://edocs.bea.com/jrockit/jrdocs/refman/index.html

Trace-Context Sensitive Performance Profiling

for Enterprise Software Applications�

Matthias Rohr1, André van Hoorn1, Simon Giesecke2, Jasminka Matevska1,
Wilhelm Hasselbring1, and Sergej Alekseev3

1 Software Engineering Group, University of Oldenburg, Germany
2 OFFIS Institute for Information Technology, Oldenburg, Germany

3 Nokia Siemens Networks GmbH & Co KG, Berlin, Germany

Abstract. Software response time distributions can be of high variance
and multi-modal. Such characteristics reduce confidence or applicability
in various statistical evaluations.

We contribute an approach to correlating response times to their cor-
responding operation execution sequence. This provides calling-context
sensitive timing behavior models. The approach is based on three equiv-
alence relations: caller-context, stack-context, and trace-context equiva-
lence. To prevent model size explosion, a tree-based hierarchy provides
timing behavior models that provide a trade-off between timing behavior
model size and the amount of calling-context information considered.

In the case study, our approach provides response time distributions
with significantly lower standard deviation, compared to using less or no
calling-context information. An example from a performance analysis of
an industry system demonstrates that multi-modal distributions can be
replaced by multiple unimodal distributions using trace-context analysis.

1 Introduction

Response time monitoring data is a valuable artifact for software performance
analysis of software systems, such as enterprise information systems based on
Java EE. For instance, response time data from such systems is used for online
performance evaluation, such as performance optimization and failure diagno-
sis, and for offline performance evaluation, such as performance tuning, bench-
marking, profiling, and performance prediction. Typically, not only end-to-end
response times are considered, but also response times of operations (alterna-
tively called methods, routines, procedures, or sometimes services), i.e., software
architecture entities that group statements to larger blocks of software.

Enterprise software applications are usually deployed in middleware environ-
ments that do not provide real-time properties and show non-trivial scheduling
and queueing behavior. These systems typically have to serve large numbers
of concurrent and heterogeneous user requests competing for computational re-
sources. Therefore, the timing behavior of such systems tends to be of high
� This work is supported by the German Research Foundation (DFG), grant GRK

1076/1.

S. Kounev, I. Gorton, and K. Sachs (Eds.): SIPEW 2008, LNCS 5119, pp. 283–302, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

284 M. Rohr et al.

variance and follows complex distributions. Unfortunately, many analytical and
statistical performance evaluation approaches may produce low quality results
for such timing behavior or cannot handle complex distribution families.

Operation executions show specific timing behavior for the calling-context of
an operation execution, which is given by the call trace that corresponds to the
execution of an operation. We discovered that a significant part of undesired dis-
tribution characteristics result from calling-context specific timing behavior of
software operations. Our approach is to derive calling-context specific response
time distributions by correlating response times to sequences of operation exe-
cutions (see also Rohr et al. [1]). The resulting timing behavior model consists of
multiple, calling-context specific response time distributions for each operation.

For large and dynamic systems, the number and size of traces might be very
large. To prevent model size explosion [2], a hierarchy of abstraction levels
for calling-context information is provided. Three abstraction levels are given
by three equivalence relations: caller-context, stack-context, and trace-context
equivalence. A tree-based hierarchy provides timing behavior models that pro-
vide a trade-off between timing behavior model size and the amount of calling-
context information considered.

We contribute new empirical data on trace-context specific timing behav-
ior distributions from a commercial telecommunication software system and a
detailed analysis for a non-trivial Java online store demo application. Trace-
context analysis is also compared to two other types of calling-context types
(stack-context, caller-context). Furthermore, it is analyzed how the number of
instrumented software operations relates to the calling-context analysis. Finally,
the case study provides quantitative data showing that trace-context informa-
tion is a major source of dispersion in response time distributions. In contrast to
our former results [1], the reduction of standard deviation is studied for a large
number of random instrumentations, to provide results that are independent
from the selection of monitoring points.

The document is structured as follows. Section 2 discusses calling-context
dependence in software timing behavior. Our approach to modeling timing be-
havior in dependence to calling-contexts is presented in Section 3 in combination
with an example based on monitoring data from an industry system. Section 4
presents a step to optimize the timing behavior model. The case study is pre-
sented in Section 5. A discussion of our approach is in Section 6 before the related
work and the conclusions follow in Section 7 and 8.

2 Calling-Context Dependence of Software Response
Time Distributions

2.1 Software Response Time Distribution Characteristics

In this paper, the duration between the start and the end of an operation ex-
ecution is denoted its response time [3]. This response time metric does not
distinguish CPU time for the operation execution from other times, such as I/O
processing time, resource waiting time, and response times of invoked operations

Trace-Context Sensitive Performance Profiling 285

(sub-calls). Hence, this metric less accurately describes the resource demands
(e.g., CPU and I/O) than other timing metrics that do that distinction. The
advantage of this simple response time metric is that it can be efficiently moni-
tored and it does not require platform-specific monitoring functionality such as
hardware performance counters.

Response time distributions of operations in software systems, such as in Java
EE applications, often show high variance and do not follow simple distribution
families, such as exponential or normal distributions. For instance, we measured
the software operation response times displayed in Figure 1(a) during a perfor-
mance evaluation of a large industry software system of Nokia Siemens Networks.
The system evaluated is one of the leading commercial software platforms for im-
plementing signaling services in telecommunication networks. The shape of the
response time distribution (Figure 1(b)) of this operation cannot be accurately
described by a single exponential or normal distribution.

10
0

30
0

50
0

70
0

Calendar time (hour:minute)

R
es

po
ns

e
tim

e
in

 m
ic

ro
se

co
nd

s

14:18 14:20 14:22 14:24

(a) Response times measured for opera-
tion f

0.
00

0
0.

00
4

0.
00

8

0 100 200 300 400 500 600
Response time in microseconds

P
ro

ba
bi

lit
y

de
ns

ity

(b) Probability density distribution for
operation f

Fig. 1. “Clusters” and multi-modality in the software operation response times moni-
tored in an industry telecommunication signaling system

Another example of multi-modal timing behavior distributions is provided by
Bulej et al. [4]. These authors reported multi-modal response time distributions
in different versions of CORBA middleware and use the term “cluster” for each
group of similar response times. Bulej et al. [4] illustrate that clusters in timing
behavior measurements reduce the potential to detect changes in the timing
behavior of software. The authors experienced this problem in the context of
performance regression benchmarking, which aims at detecting regressions in
software performance between different versions of a software product.

High variance in response time distribution reduces the confidence in vari-
ous statistical evaluations. An example for such an evaluation is the statisti-
cal hypothesis test that two response time observation sets belong to the same
distribution. The confidence of this test usually decreases by increasing stan-
dard deviation, or more samples are required to reach the same confidence.
Complex distributions, e.g., showing multi-modality, are not usable in many

286 M. Rohr et al.

performance evaluation approaches because of mathematical tractability. Ap-
proximating complex distributions of response time measurements using simple
distribution families is an option to satisfy requirements of performance evalua-
tion approaches, but may lead to low quality results.

2.2 Calling-Context Specific Timing Behavior

Different timing behavior can correspond to multiple calling-contexts for the
same software operation. Possible reasons are that the contexts correspond to
particular software system states or operations show different timing behavior
when they are used in different types of service requests. An example for the
first is that a system provides different levels of personalization depending on
the current workload intensity [5]; an example for the latter is that the response
time of a service might heavily depend on the type of the request e.g., a water-
marking service in an online media store might show different response time dis-
tributions for different media types that use individual watermarking techniques.

Calling-context is the set of circumstances or facts that surround an opera-
tion call. Software operation executions are embedded in sequences of interact-
ing operation executions that participate in answering external service requests
(from users or other systems). We consider three simplified models of the general
calling-context that take into account different parts of the execution sequence
of an execution: caller-context, stack-context, and trace-context. These models
will be described in more detail in the next section.

Many aspects of the context of an operation execution are relevant to per-
formance behavior. A key activity of performance modeling is the selection of
the relevant aspects to consider. Obviously, the more such aspects are included,
the higher precision can be expected from performance analysis. Modeling all
relevant aspects to timing behavior is usually not an option, since the overall
modeling and analysis effort grows by increasing modeling detail. Additionally,
in some cases such as performance modeling during the early design of a software
system, relevant context information may be unknown and it has to be decided,
whether unknown relevant context information is estimated and included, or if
it is excluded from the performance model.

The response time distribution of an operation is composed of response times
made in different calling-contexts. It is our hypothesis that this causes a signif-
icant part of the distribution variance or multi-modality. If this hypothesis is
true, it follows that including relevant calling-context information into timing
behavior modeling can improve timing behavior evaluation approaches that are
sensible to high variance or multi-modality in response time distributions, such
as many anomaly detection approaches.

3 Approach to Calling-Context Sensitive Timing
Behavior Modeling

In this section, we describe how calling-context information can be used in
timing behavior modeling. We compare three different types of calling-context

Trace-Context Sensitive Performance Profiling 287

information: caller-context, stack-context, and trace-context. Caller-context and
stack-context information have been used in performance evaluation before by
Ammons et al. [6] and Graham et al. [7].

3.1 Software Behavior and Its Monitoring

We assume that software systems are composed of components. The components
provide operations that might be requested by other components, external users,
or systems.

Primary artifacts of runtime behavior are executions of the operations. We
define a monitored execution as a tuple (o, i, r, st) of an operation o, its response
time r, a start time st, and an identifier i, which is a number to distinguish
executions of the same operation. As described in Section 2.1, we define the
response time of an execution to be the number of time units (e.g., milliseconds)
between the start and the end of an execution.

A trace is a finite sequence of operation executions that results from a user
request or a request of an external system. We limit the scope to synchronous
communication between executions as defined in the UML [8]: the caller of an
operation is blocked and has to wait until the callee returns a result before it
continues its own execution. Figure 2 provides the UML Sequence Diagrams for
the running example.

Fig. 2. UML Sequence Diagrams from a module of a partially instrumented telecom-
munication signaling system of Nokia Siemens Networks derived from monitoring data.
(Operation names changed, operations omitted).

A trace can be represented by a dynamic call tree [6]. Each node of such
an ordered tree represents an operation execution by its operation name. An
edge from one node to another, i.e. their parent-child relation, corresponds to
the caller/callee relation within the trace. Figure 3 shows the four trees (three
consisting of one node only) that represent the traces shown in Figure 2.

288 M. Rohr et al.

Fig. 3. Tree representation of each of the traces illustrated in Figure 2

3.2 Types of Calling-Context Equivalence

It is our goal to partition operation response times that are within equivalent
calling-contexts. In the following we specify three equivalence relations:

– Caller-context equivalence: Two executions of the same operation are caller-
context equivalent if they are called from operations with the same name.

– Stack-context equivalence: Two executions of the same operation are stack-
context equivalent if the paths from the corresponding nodes to their roots
are equal.

– Trace-context equivalence: Two executions of the same operation are trace-
context equivalent if the corresponding trees are equal and both executions
correspond to dynamic call tree nodes with the same position within the
tree.

Trace-context equivalence implies stack-context equivalence and stack-context
equivalence implies caller-context equivalence.

Each of the three equivalence relations specifies a partitioning of the monitored
executions and its response times into equivalence classes. In the following, we
use the terms caller-, stack-, and trace-context to refer to an equivalence class
of executions that are caller-, stack-, and trace-context equivalent respectively.
The term calling-context refers to any of those three equivalence classes.

3.3 Example: Trace-Context Analysis

As presented in Section 2.1, operation f has a multi-modal response time distrib-
ution (Figure 1(b), page 285). Applying calling-context analysis to the monitor-
ing data and corresponding traces, shown as trees in Figure 3, identifies sets of
calling-contexts. This set is consists of three trace-contexts, two stack-contexts
(d(), a(), f() and f()), and two caller-contexts ($(), denoting the external caller,
and a()). The stack-contexts and caller-contexts are identical for this operation.
Therefore, stack-context information does not allow one to distinguish more
calling-context than using caller-context information in this case.

Stack-Context Analysis and Caller-Context Analysis. Figure 4 shows the corre-
sponding probability density distributions that would result from stack-context

Trace-Context Sensitive Performance Profiling 289

analysis and caller-context analysis for this operation. The first stack-context
still shows a multi-modal distribution (Figure 4(a)).

The standard deviation of all response times for that operation is 136.47,
the standard deviation corresponding to stack-context 1 is 155.54 and for stack-
context 2 it is 49.74. The average standard deviation for the stack-context sen-
sitive model, weighted by the observed calling frequency, is 120.13. This means
that 11.97% of the standard deviation for the monitoring data of this operation
can be removed using stack-context information.

Response time microseconds

P
ro

ba
bi

lit
y

de
ns

ity
0.

00
0

0.
00

4
0.

00
8

0 100 200 300 400 500

(a) Probability density distribution for
stack-context 1

Response time in microseconds

P
ro

ba
bi

lit
y

de
ns

ity
0.

00
0

0.
00

4
0.

00
8

200 250 300 350 400 450

(b) Probability density distribution for
stack-context 2

Fig. 4. Stack-context analysis identifies two stack-contexts for operation f

Trace-Context Analysis. Trace-context analysis allows one to distinguish three
response time distributions as illustrated in Figure 5. These trace-contexts cor-
respond to different calls of operation f shown in the UML Sequence Diagrams
in Figure 2 on page 287: Trace-context 1 (solid line in Figure 5(a)) corresponds
to the first call of f() in SD1, trace-context 2 (Figure 5(b)) to the second call
of f() in SD1, and trace-context 3 (dashed line in Figure 5(a)) to the call of f()
in SD4.

The three probability distributions for these trace-context are not multi-
modal. This demonstrates that a multi-modal response time distribution can
be replaced by multiple unimodal distributions using trace-context analysis, in
an industrial software system. Caller-context analysis or stack-context analysis
is not able to resolve multi-modality in this case.

The standard deviation corresponding to trace-context 1 is 53.83, for trace-
context 2 it is 2.20, and for stack-context 2 it is 49.74. Weighted by the calling
frequency of the monitoring data, the average standard deviation for a trace-
context sensitive model is 35.94. This means that 73.66% of the standard devia-
tion for the monitoring data of this operation can be removed using stack-context
information. Hence, most of the dispersion in the response time distribution of
this particular operation can be removed by making trace-context dependence
explicit.

In this case, the benefit in terms of removing standard deviation, is much
higher for trace-context analysis than for stack- or caller-context analysis. To

290 M. Rohr et al.

Response time in microseconds

P
ro

ba
bi

lit
y

de
ns

ity
0.

00
0

0.
00

4
0.

00
8

0.
01

2

200 300 400 500

Trace−context 1
Trace−context 3

(a) Probability density distribution for
trace-context 1 and 3

Response time in microseconds

P
ro

ba
bi

lit
y

de
ns

ity
0.

00
0.

10
0.

20

65 70 75

(b) Probability density distribution for
trace-context 2

Fig. 5. Trace-context analysis identified three trace-contexts for operation f

study this for all operations of a software system, Section 5 presents a quan-
titative analysis on how much standard deviation of operation response time
distributions depends on which type of calling-context information for random
partial instrumentations.

4 The Calling-Context Tree

Using the same calling-context analysis detail for all operations of a system
may uncover some undesired model properties (see Section 4.1). To overcome
this, we present an additional step to find a more adequate context-sensitive
timing behavior model than trace-context analysis alone would provide. This step
consists of the representation of the results from caller-, stack-, and trace-context
analysis in a tree (Section 4.2) and the application of tree modification operators
(see Section 4.3). The application of these operators reduces the resulting number
of calling-contexts and amount of calling-context information used to model the
timing behavior of a system.

4.1 Undesired Calling-Context Analysis Results

The analysis presented in Section 3 may produce results with undesired
properties:

– Too many calling-contexts: The efficiency and feasibility of performance
analysis methods may depend on the size of the timing behavior model.

– Calling-contexts with an insufficient number of measurements: Many basic
statistical methods require a minimum number of observations in order to
provide robust results.

– Calling-contexts may be distinguished that do not differ in their timing be-
havior distributions.

– Trace-context analysis may be used in cases for that the computationally
cheaper stack- or caller-contexts would produce an equal result.

Trace-Context Sensitive Performance Profiling 291

Monitored response times
of all instrumented

software operations

RT = [...]

Partitioning based
on operation name equality

Partitioning based
on caller context equivalence

Partitioning based
on stack context equivalence

Partitioning based
on trace context equivalence

Fig. 6. The monitored operation response times of a system are partitioned according
to their calling-contexts. The calling-context equivalence relations organize the moni-
tored observations into a tree.

4.2 Construction of the Calling-Context Tree

To form a timing behavior model free of the undesired properties presented
above, the results of all three calling-context analyses are connected within a
tree, denoted calling-context tree (CCT). Moreover, the implication relationship
between the three equivalence relations allows to organize the calling-contexts
into a tree, denoted . An example of an CCT is illustrated in Figure 6. A calling-
context tree is constructed as follows:

– The root of the calling-context tree is given by all observations monitored.
– The nodes of the first level of the CCT represent calling-contexts for the

observations corresponding to the software operation with the same name.
– The nodes of the second level of the CCT represent the caller-contexts. Based

on the callee’s operation name, each second level node is connected to its
corresponding first level node.

– The third CCT level is defined by stack-context equivalence. Each third level
node is connected to its corresponding second level node.

– The fourth level of the CCT is the partitioning defined by trace-context
equivalence. Each trace-context node has an edge to its corresponding stack-
context node.

A complete timing behavior model consists of any node subset of the CCT that
is a complete partitioning of all monitored observations. For instance, each subset
of all tree nodes that resulted from the same type of calling-context analysis is a
complete partitioning, and hence, is a complete timing behavior model. A set of
tree operators, described next, is applied to the tree to identify the node subset
that both considers as much calling-context information as possible and is free
of the undesired properties.

292 M. Rohr et al.

Leaf nodes with similar distribution

characteristics are merged

Leaf nodes without a sufficient

amount of observations are

linked to an ancestor node

Leaf nodes without

siblings are removed

Fig. 7. Node merging, removing, and linking to reduce the number of calling-contexts,
avoid unrequired trace evaluations, and to have leaf nodes corresponding to a sufficient
number of observations

4.3 Modification of the Calling-Context Tree

The maximum level of calling-context information would be included in the
timing behavior model given by the nodes of the fourth layer of the CCT, i.e.,
the trace-contexts. However, this timing behavior model may have the undesired
properties described in Section 4.1. We define three operators to the CCT tree
leafs to remove the undesired properties:

1. Leaf nodes that have no siblings are removed from the tree. The removal of
leaf nodes reduces the size and computational costs for applying the calling-
context tree as performance model in some evaluations, e.g., when it is used
as a reference model in anomaly detection or regression benchmarking. For
instance, a trace-context node that has no siblings is removed, since it makes
no sense to compute and evaluate the complete trace for trace-context analy-
sis, while stack-context analysis already provide the same response time dis-
tributions for the corresponding operation calls.

2. Leaf nodes having similar response time distribution characteristics and that
are siblings may be merged. Merging is performed until some stop criterion,
such as that the number of leafs in the tree is equal or below a user-specified
maximum number of timing behavior model entities. An alternative stop
criterion is the absence of additional sufficiently similar merging candidates.
Similarity is defined based on a user-defined similarity metric for probabil-
ity distributions. Only nodes are merged that have enough observations to
robustly determine the distribution similarity.

3. Nodes in the CCT without a sufficient number of observations are linked to
an ancestor node that has a sufficient number of observations. The linking
semantics is that all corresponding executions and response times of the
linked node are used for the node that links to it. How many observations

Trace-Context Sensitive Performance Profiling 293

are sufficient depends on two aspects: the underlying probability distribution
for the sample observations [9], and the statistical analysis that is to be
performed in the subsequent performance evaluation.

These three operators are repeatedly applied in random order to the CCT until
no further applications of operator 1 and 3 are possible and a user-defined stop
criterion for operator 2 is satisfied. An example for the application of the three
operators is illustrated in Figure 7. The final context sensitive timing behavior
model is given by the leaf nodes of the CCT.

A detailed discussion of similarity metrics between response timing distribu-
tions is out of the scope of this paper. We used a distance metric based on inter-
quartile-range and distribution median. These two metrics are considered more
robust to characterize a distribution than the more common sample mean and
standard variation, which are sensitive to extreme outliers. We experienced that
few extremely large response times are not uncommon, especially for small soft-
ware operations. This confirms to models that use log-normal distributions for
response time data, which is for instance suggested by the research of Mielke [10]
for end-to-end response times in Enterprise Resource Planning (ERP) systems.

5 Case Study

This case study explores the relation between the number of monitoring points
and the number of resulting calling-contexts, and compares the calling-context
specific response time distributions to the response time distributions without
calling-context analysis. The most important empirical result of this analysis
is that trace-context information is responsible for a significant part (20% to
40%) of the average standard deviation for the large majority of random partial
instrumentations. Trace-context analysis outperforms stack-context and caller-
context analysis that show relatively similar results.

5.1 Setting

The software system analyzed in the case study is the iBATIS JPetStore1, which
is a demo Java Web application implementing an online store scenario. The in-
strumentation to monitor response times of the internal operations of the JPet-
Store is given by the software instrumentation package Kieker [11].

The evaluation abstracts from the problem selecting monitoring points by
evaluating more than 95,000 random partial instrumentations of the 2199 pos-
sible partial instrumentations. The traces and response times are taken from
several fully instrumented experiment runs of 20 minutes. The first 3 minutes
are considered the warm-up period and are ignored in the evaluation.

The JPetStore is deployed in the Apache Tomcat Servlet container (ver-
sion 5.5.23) running on a desktop computer equipped with an Intel Pentium4
3.00GHz hyper-threaded CPU and 1GB physical memory and Linux 2.6.17.13.
1 http://ibatis.apache.org/

294 M. Rohr et al.

The application server software employs Sun Java SE 1.6.0 03. JPetStore uses a
database management system (MySQL 5.0.18) for storing business data running
on a GNU/Linux 2.6.15 system with two Intel Xeon 3.00GHz CPUs and 2 GB
of physical memory. The application server and the database back-end are con-
nected via 100 Mbit Ethernet. A workload generator runs on a separate desktop
computer being identically equipped and configured as the application server
node above.

The workload for the JPetStore is generated by the workload driver Apache
JMeter 2.2 extended by our probabilistic workload driver Markov4JMeter [12].
This tool allows to emulate users based on an application model and a mix of
corresponding probabilistic user behavior models. The think time between user
requests is configured to be normally distributed. The number of concurrent
users is set to 10, which can be handled without any problems by the system
under monitoring. A detailed description of the workload can be found in van
Hoorn et al. [12].

5.2 Results

Table 1 outlines characteristics of the monitoring data collected during the ex-
periment runs and the range of the number of caller-, stack-, and trace-contexts
resulting from calling-context analysis.

Table 1. Summary of case study characteristics

Instrumentation Full (199 mon.pts.) Random

Instrumented Operations 199 1–198
Monitored Executions 2,032,573 1–2,032,572
Traces 36,036 1–36,036
Caller-contexts 290 1–312
Stack-contexts 368 1–368
Trace-contexts 7021 1–7021

The number of resulting calling-contexts is illustrated in Figure 8 (1,500 sam-
ples of 95,000 plotted) in dependence to the number of monitoring points. The
number of stack-contexts and caller-contexts both grow linearly with similar
rates by the number of monitoring points, as shown in Figure 8(a). In most of
the instrumentation scenarios (80%), the number of stack-contexts was larger
than the number of caller-contexts for the same instrumentation. In contrast to
the number of distinct stack- and trace-contexts, the number of caller-contexts
is not at its maximum for full instrumentation. This demonstrates that adding
monitoring points can reduce the number of caller-contexts. Figure 8(b) visual-
izes the numbers of trace-contexts resulting from the random instrumentation
scenarios. The number of trace-contexts increases much faster than the number
of stack-contexts and caller-contexts does.

In general, the number of distinct calling-contexts tends to grow with the
number of monitoring points. Adding a new monitoring point to an existing

Trace-Context Sensitive Performance Profiling 295

0
10

0
20

0
30

0

0 50 100 150 200

Number of monitoring points

N
um

be
r

of
 c

on
te

xt
s

Stack−contexts
Caller−contexts

(a)

0
20

00
40

00
60

00
80

00

0 50 100 150 200

Number of monitoring points

N
um

be
r

of
 c

on
te

xt
s

Trace−contexts
Stack− and Caller−contexts

(b)

Fig. 8. The number of monitoring points in relation to the number of contexts

instrumentation also increases the number of trace-contexts and stack-contexts,
while adding a monitoring point may reduce the number of caller-contexts. How-
ever, the fact that an instrumentation with n monitoring points has m calling-
contexts does not imply that a second instrumentation with n′ > n monitoring
points has more than m calling-contexts (in the same software system and for the
same workload), since different monitoring points can increase the same numbers
of calling-contexts differently.

Response Time Distribution Variance Related to Calling-Context Information.
Figures 9(a) – 9(c) show the average standard deviation reduction in the timing
behavior model resulting from caller-, stack-, and trace-context analysis. These
diagrams show the distribution of this metric as boxplotted for bins of numbers
of monitoring points.

Figure 9(a) reveals that caller-context information corresponds to about 6.8%
of average standard deviation of all response times in a fully instrumented ex-
periment run. For less monitoring points, there is a larger uncertainty on how
much average standard deviation could be removed by caller-context analysis.
If half of the operations are instrumented, 75% of the instrumentations result in
an average standard deviation isolation of more than 6.2%. For smaller numbers
of monitoring points, a majority of instrumentations results in below 2% but
the boxplot also shows a large number of outliers (observations above an upper
whisker in a boxplot [13]) representing cases in which up to 45% percent of stan-
dard deviation can be removed. In summary, cases exist where caller-context
analysis is very effective. The benefit of caller-context analysis to average stan-
dard deviation reduction is in most cases below 7%.

Stack-context analysis (see Figure 9(b)) shows slightly more benefits than
using caller-context analysis. For instance, for higher numbers of instrumented
operations approx. 11% of the average standard deviation can be removed.

Figure 9(c) shows that much more average standard deviation is connected
to trace-context information than to the other calling-context types. For full
instrumentation, trace-context analysis leads results in about 42% less average

296 M. Rohr et al.

Mean
0

10
20

30
40

10 30 50 70 90 110 130 150 170 190
Number of monitoring points

A
ve

ra
ge

 r
el

at
iv

e
st

.d
ev

. d
ec

re
as

e
in

 %

(a) Caller-context analysis

Mean

0
10

20
30

40

10 30 50 70 90 110 130 150 170 190
Number of monitoring points

A
ve

ra
ge

 r
el

at
iv

e
st

.d
ev

. d
ec

re
as

e
in

 %

(b) Stack-context analysis

Mean0
20

40
60

80

10 30 50 70 90 110 130 150 170 190
Number of monitoring points

A
ve

ra
ge

 r
el

at
iv

e
st

.d
ev

. d
ec

re
as

e
in

 %

(c) Trace-context analysis

Trace−context analysis
Stack−context analysis
Caller−context analysis
1st and 3rd quartile

2
5

10
20

50

0 50 100 150 200
Number of monitoring points

A
ve

ra
ge

 r
el

at
iv

e
st

.d
ev

. d
ec

re
as

e
in

 %

(d) Comparison of median, 1st and 3rd
quartile curves for each calling-context
analysis type. (Window size 10 mon.pts.,
step-size 10 mon pts).

Fig. 9. Average decrease in standard deviation for different numbers of monitoring
points using calling-context information compared to standard deviation using no
calling-context information

standard deviation in the trace-context sensitive response time distributions than
using no calling-context information. For more than the half of the evaluated
instrumentations with around 40 monitoring points, 40% of average standard
deviation could be removed and only few instrumentations of that size were in
the results that had less than 10% of average standard deviation reduction.

This shows that a large part of the standard deviation of the monitored and
evaluated scenarios is related to trace-context information.

Figure 9(d) compares the amount of average standard deviation that can be
removed by each of the calling-context types. It underlines that stack-context
analysis performs slightly better than caller-context analysis, and that trace-
context analysis outperforms stack-context analysis and caller-context analysis.
Trace-context analysis removes for most instrumentation scenarios, in particular
for those with more than 25 monitoring points, more than 10% of the standard
deviation. For most instrumentation scenarios with more than 50 monitoring
points, more than 40% standard deviation decrease was observed.

Trace-Context Sensitive Performance Profiling 297

Trace−context analysis
Stack−context analysis
Caller−context analysis
1st and 3rd quartile

2
5

10
20

50

0 50 100 150 200 250
Number of calling contexts

A
ve

ra
ge

 r
el

at
iv

e
st

.d
ev

. d
ec

re
as

e
in

 %

Fig. 10. Average decrease in standard deviation for different numbers of calling-
contexts using calling-context information compared to standard deviation using no
calling-context information. Comparison of Median, 1st and 3rd quartile curves for
caller-, stack-, trace-context analysis. (Window size 10 contexts, step size 2 contexts).

Figure 10 presents how much standard deviation is connected to the calling-
contexts in dependence of the number of calling-contexts. Figure 10 reveals that
trace-context information is connected to more calling-context information than
the other two calling-context types. This means that it does not “just” provide
more different equivalence classes for each monitoring point, but also defines
calling-contexts that are connected to more average standard deviation than
using caller-, or stack-context analysis.

6 Discussion and Limitations

In the following, application issues and limitations related to continuous runtime
behavior monitoring during regular operation in distributed software applica-
tions are discussed.

6.1 Monitoring Overhead

As discussed in the introduction, typical application scenarios are runtime QoS
management and failure diagnosis based on anomaly detection, such as
[14,15,16]. This requires continuous monitoring during regular operation of the
software system. Therefore, the monitoring overhead should be reasonably low.
It is our experience that imposing less than 20% overhead on response times
and throughput is accepted by the industry in exchange for monitoring and
supervision.

A detailed discussion on monitoring overhead is not part of this paper. In the
case studies using our instrumentation prototype Kieker, we observed an over-
head on response times of below 15% for systems that consist of one execution
environment. For distributed software systems, an additional overhead exists for

298 M. Rohr et al.

remote communication. This results from the absence of a distributed clock that
could be used to order executions within a sequence, and from the requirement
to pass unique trace identifiers together with remote methods calls in order to
distinguish multiple concurrent executions within the system.

Kieker uses aspect-oriented programming (AOP), similar to the monitoring
framework InfraRED, for which an overhead of about 10% was reported [17].

6.2 Distributed Software Systems

Our monitoring infrastructure allows to trace execution paths through multiple
execution environments for certain types of remote communication such as the
Hessian Web Service protocol2, which is for instance supported by the Spring
Java EE application framework. Support for other remote communication meth-
ods, such as Remote Method Invocation, may be future work. The context-
dependent profiling technique presented in this paper is limited to synchronous
communication, i.e. a caller is blocked and waits until the callee returns a re-
sult. Traces with parallel asynchronous communication, are automatically split
into multiple execution traces that only contain synchronous communication.
Therefore, the calling-context analysis cannot benefit from correlations between
timing behavior and the execution traces characteristics that are not within the
sequence of synchronous communication. This limitation could be resolved by
using an alternative monitoring approach, such as Briand et al. [18].

6.3 Representativeness and Completeness of Monitoring Data

In our approach, timing behavior distributions and calling-contexts result from
monitoring data. This results in the two major risks that the monitoring data is
not representative for normal behavior and that not all calling-contexts are de-
tected. For instance, calling-contexts are missing if possible execution sequences
were not activated during the monitoring period, which depends on the system
workload. These risks can be minimized by using a sufficient amount of monitor-
ing data from real system usage. For instance, for a typical online store, we con-
sider few weeks of monitoring data to be sufficient for timing behavior anomaly
detection. For the identification of calling-contexts, static (source code) analysis
provides an alternative to monitoring data analysis, since it does not depend on
system workload. Since the performance behavior of a software system changes
over time (e.g., improving of algorithms, changes in user behavior, changes in
hardware), it is required to update software performance models regularly.

6.4 Considering Other Types of Calling-Context Information

This paper explored the correlation between operation response time distrib-
utions and operation execution sequences, represented as dynamic call trees.
The results showed that especially trace-context information can be strongly
connected to response time distribution characteristics.
2 http://hessian.caucho.com/

Trace-Context Sensitive Performance Profiling 299

As mentioned before, trace-, stack- and caller-context analysis only consider
a part of the calling-context, i.e. the set of circumstances or facts that surround
an operation call. It has been suggested to also consider parameter values [19]
or workload intensity [20] in timing behavior modeling. Additionally, the infor-
mation provided on lower system layers, such as performance counter metrics on
cache hits and on the number of context switches, are also often correlate to tim-
ing behavior. In this paper, these other types of calling-context information were
not studied. It is not known, to what extend these are beneficial for considering
in the analysis of response times in enterprise software systems. Furthermore,
we did not address whether multiple object instances of the same class show
different timing behavior.

Considering these other types of calling-context information may be beneficial
as well, and should be subject to future research.

7 Related Work

Related work comes from the domains of profiling and trace analysis, perfor-
mance evaluation, online failure diagnosis, and performance prediction.

There is much literature in the domain of software profiling that addresses
to connect response time behavior to method calls and context information.
Graham et al. [7] introduced the profiler gprof. Gprof provides caller-context in-
formation (i.e., makes caller-callee relations explicit). The trace-context analysis
studied in this paper is an extension of the concept of caller-contexts. Most
modern profiling tools, such as Intel’s VTune Performance Analyzer follow gprof
by providing caller-context information (see Xie and Notkin [21]). Ammons et
al. [6] go beyond the caller-callee relationship and introduces what we call stack-
context equivalence. We extend the concept of stack-context equivalence by us-
ing the complete sequence of operations for the definition of equivalence. These
authors do not discuss the timing behavior distributions resulting from calling-
context analysis, which is a major focus of our paper. A more recent approach
to evaluating runtime behavior in the context of execution traces is given by the
work on monitoring trace representation of Hamou-Lhadj [22]. This approach
and other trace analysis approaches, such as those surveyed by Hamou-Lhadj
and Lethbridge [2], apply high levels of abstraction in order to achieve compact
models for very large traces. The amount of preserved calling-context informa-
tion of such trace models are at stack-context level or below (e.g., caller-context).
Those techniques do not focus on combining trace-context analysis with timing
behavior evaluation.

Bulej et al. [4], report and analyze timing behavior clusters for two CORBA
implementations in the context of regression benchmarking of different software
versions. The k-means clustering approach is used to identify clusters in timing
behavior measurements. In contrast to our approach, this does not require to
connect single execution observations to traces, therefore the requirements on the
monitoring infrastructure are lower than in our approach. Our approach uses the
trace information as additional information, which allows the precise distinction

300 M. Rohr et al.

of timing behavior classes (if there are correlations to the trace-contexts). The k-
means clustering approach is a heuristic that performs well, if the correct number
of clusters is known in advance and the values of the clusters are well separated.

Various approaches have been presented to use timing behavior monitoring
data of software systems in order to implement preemptive quality of service
management. For instance, in the Magpie project by Barham et al. [23] it has
been motivated to correlate monitored events for specific requests to timing
behavior measurements to identify anomalies and perform failure diagnosis. The
Magpie approach shares the general idea of correlating monitored events within
a request to timing behavior with our approach, but details on the correlation
or empirical data have not been presented, so far.

The performance modeling approach of Koziolek et al. [19] considers parame-
ter values as part of usage profiles in order to increase performance prediction
precision. Parameter values can also be considered calling-context information.
The three calling-context types described in this paper are not part of Koziolek
et al. [19]’s software performance model.

8 Conclusions

Summary. This paper presents empirical data from a lab case study and from
monitoring data of an industry system that both show that a large part of the
standard deviation in software response time distributions can be related to
calling-context information. This allows to conclude that using calling-context
information can significantly improve timing behavior evaluations, such as those
that depend on the variance of response time distributions.

In this paper, we presented our approach to evaluating operation response
time measurements in dependence to their calling-contexts. Our approach creates
a trace-context sensitive timing behavior model from monitoring data. We in-
troduced trace-context equivalence, which extends the concepts of caller-context
equivalence and stack-context equivalence. In a second step, our approach orga-
nizes equivalence classes of monitored observations in a tree-structure to reduce
the number of resulting calling-contexts and to remove unrequired distinctions
of calling-contexts.

Additionally, we demonstrated for monitoring data of a commercial telecom-
munication signaling system that multi-modal distributions can be removed from
timing behavior models by trace-context analysis.

Future Work. Currently, the approach requires the complete trace to be recorded
before an estimation of a response time for an execution within the trace is
possible. This is not necessarily a problem in failure diagnosis approaches such
as anomaly detection, but in some cases it can be desirable to estimate the
expected response times of a method before its execution. In that case, only a
part of the full trace for that request is recorded. In contrast to using the full
trace, a prefix could be used to estimate the future response time of the method
currently executed. This information could be useful to organize scheduling in
multi-user systems.

Trace-Context Sensitive Performance Profiling 301

Acknowledgement

We would like to acknowledge Nokia Siemens Networks Berlin, Business Service
Solution for supporting this project.

References

1. Rohr, M., van Hoorn, A., Giesecke, S., Matevska, J., Hasselbring, W.: Trace-context
sensitive performance models from monitoring data of software-intensive systems.
In: Workshop on Tools Infrastructures and Methodologies for the Evaluation of Re-
search Systems (TIMERS 2008) at IEEE International Symposium on Performance
Analysis of Systems and Software (April 2008)

2. Hamou-Lhadj, A., Lethbridge, T.C.: A survey of trace exploration tools and tech-
niques. In: Conference of the Centre for Advanced Studies on Collaborative research
CASCON 2004, pp. 42–55. IBM Press (2004)

3. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Ex-
perimental Design, Measurement, Simulation, and Modeling, 1st edn. John Wiley
& Sons, Chichester (1991)

4. Bulej, L., Kalibera, T., Tůma, P.: Repeated results analysis for middleware regres-
sion benchmarking. Performance Evaluation 60(1-4), 345–358 (2005)

5. Arlitt, M.F., Krishnamurthy, D., Rolia, J.: Characterizing the scalability of a large
web-based shopping system. ACM Transactions on Internet Technology 1(1), 44–69
(2001)

6. Ammons, G., Ball, T., Larus, J.R.: Exploiting hardware performance counters with
flow and context sensitive profiling. In: Conference on Programming Language
Design and Implementation (PLDI 1997), pp. 85–96. ACM, New York (1997)

7. Graham, S.L., Kessler, P.B., McKusick, M.K.: gprof: a call graph execution profiler.
SIGPLAN Notes 17(6), 120–126 (1982)

8. Object Management Group (OMG): Unified Modeling Language: Superstructure
Version 2.1.1 (February 2007)

9. Barrett, J.P., Goldsmith, L.: When is n sufficiently large? The American Statisti-
cian 30(2), 67–70 (1976)

10. Mielke, A.: Elements for response-time statistics in ERP transaction systems. Per-
formance Evaluation 63(7), 635–653 (2006)

11. Rohr, M., van Hoorn, A., Matevska, J., Sommer, N., Stoever, L., Giesecke, S., Has-
selbring, W.: Kieker: Continuous monitoring and on demand visualization of Java
software behavior. In: IASTED International Conference on Software Engineering
2008, pp. 80–85. ACTA Press (February 2008)

12. van Hoorn, A., Rohr, M., Hasselbring, W.: Generating probabilistic and intensity-
varying workload for web-based software systems. In: SPEC International Perfor-
mance Evaluation Workshop (SIPEW 2008). LNCS, vol. 5119. Springer, Heidelberg
(2008)

13. Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for Engineers,
3rd edn. John Wiley & Sons, Inc., Chichester (2003)

14. Duzbayev, N., Poernomo, I.: Runtime prediction of queued behaviour. In: Hofmeis-
ter, C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS, vol. 4214, pp. 78–94.
Springer, Heidelberg (2006)

15. Diaconescu, A., Mos, A., Murphy, J.: Automatic performance management in com-
ponent based software systems. In: First International Conference on Autonomic
Computing (ICAC 2004), pp. 214–221. IEEE, Los Alamitos (2004)

302 M. Rohr et al.

16. Agarwal, M.K., Appleby, K., Gupta, M., Kar, G., Neogi, A., Sailer, A.: Problem
determination using dependency graphs and run-time behavior models. In: Sahai,
A., Wu, F. (eds.) DSOM 2004. LNCS, vol. 3278, pp. 171–182. Springer, Heidelberg
(2004)

17. Govindraj, K., Narayanan, S., Thomas, B., Nair, P., P, S.: On using AOP for Ap-
plication Performance Management. In: AOSD 2006 - Industry Track Proceedings
(Technical Report IAI-TR-2006-3, University of Bonn), pp. 18–30 (March 2006)

18. Briand, L.C., Labiche, Y., Leduc, J.: Toward the reverse engineering of UML se-
quence diagrams for distributed Java software. IEEE Transactions on Software
Engineering 32(9), 642–663 (2006)

19. Koziolek, H., Becker, S., Happe, J.: Predicting the Performance of Component-
based Software Architectures with different Usage Profiles. In: 3rd Interna-
tional Conference on the Quality of Software Architectures (QoSA 2007). LNCS,
vol. 4880, pp. 145–163. Springer, Heidelberg (2008)

20. Rohr, M., Giesecke, S., Hasselbring, W.: Timing Behavior Anomaly Detection in
Enterprise Information Systems. In: 9th International Conference on Enterprise
Information Systems (ICEIS 2007), June 2007, pp. 494–497. INSTICC Press (2007)

21. Xie, T., Notkin, D.: An empirical study of Java dynamic call graph extractors. Tech-
nical Report UW-CSE-02-12-03, University of Washington Department of Com-
puter Science and Engineering, Seattle, WA, USA (December 2002)

22. Hamou-Lhadj, A.: Techniques to Simplify the Analysis of Execution Traces for
Program Comprehension. PhD thesis, Ottawa-Carleton Institute for Computer
Science, School of Information Technology and Engineering (SITE), University
of Ottawa (2005)

23. Barham, P., Isaacs, R., Mortier, R., Narayanan, D.: Magpie: online modelling and
performance-aware systems. In: 9th Conference on Hot Topics in Operating Sys-
tems (HOTOS 2003), USENIX Association, p. 15 (2003)

Performance Monitoring and Analysis of a Large Online
Transaction Processing System

Manoj Nambiar and Hemanta Kumar Kalita

Performance Engineering Research Center
TATA Consultancy Services, Gateway Park (Akruti Business Port)

Road No. 13, Andheri (E), Mumbai–400093, India
{m.nambiar, hemanta.kalita}@tcs.com

Abstract. A large Employee Appraisal System is accessed by clients from dif-
ferent international locations using the Internet. Being a distributed system, it is
not easy to monitor and assess performance of such a large online transaction
processing (OLTP) system. Performance Monitoring and Analysis of such a sys-
tem requires pinpointing to the box or link in the system that is responsible for
the overall slow performance. In this paper, we elaborate on our approach of per-
formance monitoring and analysis of a large OLTP system using an employee
appraisal system as an example.

1 Introduction

A large IT company, which has offices in different countries and employees at different
locations, hosts a large employee appraisal system . The employees use this system to
initiate their appraisals, select appraisers, and enter their self ratings. The supervisors
use the system to rate the employees. Within the application, there is a workflow sys-
tem which notifies the status of an employee’s appraisal to whomever (supervisor or
employee) against whom action is pending.

Fig. 1 shows the architecture of the appraisal system. The system has a separate
Workflow Server and Workflow Database Server only to manage workflow processing.
The Application Server and Database Server of the system process the remaining trans-
actions. There are multiple instances of the Application Server and Workflow Server
connected through the SSL1 Accelerator. The Application Server acts as the front end-
ing server for the appraisal application, and it makes calls to the Workflow Server for
workflow related transactions. The Database Server is also partitioned according to the
functionality as Database Server and Workflow Database Server .

All employees are required to enter appraisal details on a half-yearly basis. The ap-
praisal system for a half year period is kept open for two months. A large number of
employees, however, access the system in the last week of the appraisal cycle. As a
result, the system response becomes very slow; thereby, impacting productivity consid-
erably. For the system managers, it is essential that they identify all the bottlenecks in
the system, so that they can provide a solution to improve the system performance.

1 Secure Sockets Layer.

S. Kounev, I. Gorton, and K. Sachs (Eds.): SIPEW 2008, LNCS 5119, pp. 303–313, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

304 M. Nambiar and H.K. Kalita

WAN

Primergy

Primergy

Primergy

Primergy

Internet cloud

Database server

Workflow server Workflow database server

Data center

Application server

SSL Accelerator

Fig. 1. A large employee appraisal system

This paper highlights how the performance of a large employee appraisal system was
analyzed using data provided by ScrutiNet[1]. Also shown in the specific measurements
is how simple context specific data can be used to aid analysis.

The remainder of this paper is divided into five sections. Section 2 discusses related
work and existing performance monitoring and analysis tools. Section 3 explains our
approach to performance monitoring and analysis using ScrutiNet. Section 4 discusses
deployment of ScrutiNet in the large employee appraisal system . A detailed result
analysis is done in Section 5, and Section 6 concludes the paper.

2 Related Work

There are many approaches to performance monitoring and analysis of OLTP system.
For the purpose of discussion, we categorize them into active monitoring, application
logging, and passive monitoring.

Active Monitoring. In this method, application specific scripts are developed and
scheduled to be run at specific intervals. Instances of these scripts are deployed
across strategic locations on the Internet. These scripts monitor transaction re-
sponse times and upload the measurement details to a centralized database so that
all data can be seen from a single console. HP/Mercury Business Availability center
[7] is a good example of an active monitoring tool. Apart from script development,
there is a lot of dependency on the availability of measurement agents to gather
data. These agents themselves can add to the load on the server. Moreover, not
all transactions can be run by agents especially those that change the state of the
application. For example, a bank withdrawal transaction cannot be run by an agent.

Application Logging. Embedding application code with time stamps can provide
enough detail about the location of the bottlenecks. Often, these logs are not easy

Performance Monitoring and Analysis of a OLTP System 305

to read because they require the development of application log readers for the
purpose of reading. Also, increasing the amount of logging itself can cause seri-
ous drops in performance levels. Application Response Measurements (ARM)[8]
is one specification that attempts to standardize code level performance logging.

Passive Monitoring. Analyzing the network packets coming in and out of a transac-
tion server can help gain valuable insight into application performance. And this
can be done with the aid of network switches in such a way that the application
being measured is not impacted at all. This is the basis of passive monitoring, and
it is a desirable way to monitor application performance. Passive monitoring, there-
fore, is the focus of this document. There are many passive transaction performance
monitoring tools commercially available. Iwatch[2] is one such software based tool,
which provides good graphical reporting capabilities. Network General[3] provides
a hardware based solution, which stores network packets. The reporting tools of
Network General work on the packet store and compute transaction response time
and correlation across tiers. Software based tools include Crannog software Re-
sponse Watch[5], which can monitor web applications, and Compuware Vantage[4]
that has most of the features for aiding bottleneck analysis. In open source, the
authors found one passive monitoring tool called PastMon[6] that reports detailed
transaction specific metrics at the Transmission Control Protocol (TCP) level. How-
ever, string matching rules need to be built into PastMon to help classify specific
transactions.

Apart from this, [9] discusses on designing tools that would enable isolating perfor-
mance bottlenecks in distributed systems composed of black-box nodes. [10] highlights
steps in performance analysis as instrumentation/measurement and analysis (online, au-
tomatic and postmortem).

3 Performance Monitoring and Analysis Using ScrutiNet

ScrutiNet is a passive performance monitoring and analysis tool designed at the Per-
formance Engineering Research Center, TATA Consultancy Services (TCS), Mumbai.
ScrutiNet can be used to monitor online applications non-intrusively. For any OLTP
server, ScrutiNet monitors its network packets to identify transactions and measure per-
formance. For every transaction, ScrutiNet can provide details like response time and
its breakup between processing time and network delay. For multitier transactions, it
also aids in isolating the delays for a transaction across tiers.

What sets ScrutiNet apart from other passive monitoring tools is that it is application
agnostic and can be used to detect the bottleneck in any request–response based OLTP
transaction. It does not attempt to decode the application level protocol in the network
packets. For ScrutiNet, a transaction is simply a request message sent by the client to
the response message sent from the server on the same TCP connection. The request
and response messages are split into packets when transmitted over the network. So,
pipelined transactions in which two requests appear back to back in the same TCP
connection can’t be analyzed completely using ScrutiNet. However, it does not diminish
the value of ScrutiNet as a performance bottleneck detection tool.

306 M. Nambiar and H.K. Kalita

3.1 ScrutiNet Report Format

Some relevant transaction performance data reported by ScrutiNet are listed below.

Transaction Start time. The time when the first request packet from the client was
seen on the network.

Client IP Address and Port. This information identifies the TCP connection on which
the transaction is being executed.

Request Send Time. Time taken by the client to send the request message to the server.
Response. Time Taken for the server to push the last packet of the response message

back to the client since the arrival of the last request packet of the transaction.
Network Overhead. Network overhead is the sum of times elapsed during data trans-

fer phases when the server is responding. A data transfer phase is identified as time
during which there is at least one response packet unacknowledged by the client.
A data transfer phase is complete when the client acknowledges all outstanding
response packets.

Client Window Zero Delay. Client window zero is the sum of times elapsed during
all client delay phases of the transaction when the server is in the responding state.
A client delay phase is identified as the time starting from when a client sends a
TCP window update packet with a window size of zero to when the client sends a
TCP window update packet with a non zero receive window size.

Average Round Trip Time. Average of all the TCP round trip time samples taken in
the course of the transaction.

Total Bytes In. The sum of sizes of all network packets sent from the client to the
server during the transaction.

Total Bytes Out. The sum of sizes of all network packets sent from the server to the
client during the transaction.

Request Contents. The contents of the first packet of the request message in ASCII.

3.2 Correlation Functionality in ScrutiNet

A correlate functionality is available in ScrutiNet, which helps a user to find transac-
tions in the next tier related to any selected transaction in the current tier. For example,
ScrutiNet can be used to identify the database transactions when the selected HTTP
transaction is in progress. The following data appears in the correlation report.

– Transaction performance details regarding the selected transaction (seltxn). We
will call this set of selected transactions the candidate next tier transactions.

– All the transaction performance details of transactions in the next tier (txn) that
match the following criteria:

startT imetxn ≥ startT imeseltxn (1)

startT imetxn + respT imetxn ≤ startT imeseltxn + respT imeseltxn (2)

startT ime and respT ime are transaction start time and transaction response time.

Performance Monitoring and Analysis of a OLTP System 307

– Each transaction of this kind belongs to a specific TCP connection. For each con-
nection, all the transaction response times are added and reported as connection
response times. This method of analysis relates response time of one tier to that of
its neighboring tier. As such it does not depend on the total number of tiers in the
system architecture.

It should be noted that all connections to the next tier will not contribute to the
selected transaction. To know the number of connections that are opened to the next tier
can be taken as input from the application support team. Otherwise, this information
can be obtained by analyzing ScrutiNet output at a time when there is only one user in
the system.

3.3 Performance Monitoring and Analysis – ScrutiNet Based Approach

A general heuristic analysis algorithm to identify bottlenecks in a multi-tier application
when using measurement data from ScrutiNet is as follows:

1. Sort all transactions in the front tier server based on response time functionality
available in ScrutiNet.

2. Identify the transactions of interest. For each transaction, follow the subsequent
steps.
(a) Is Client Window Zero Delay greater than zero? If so, review the TCP socket

buffer settings in the client host. These problems are typically seen when the
response message size is large, so reducing/compressing the response message
can also help.

(b) Is the Network Overhead a significant part of the response time? If so, check the
Total Bytes Out measure. This is generally very large in case of high network
overheads. Compressing the response message sizes can help. Also, check if
the average round trip time is large. In such a case, the routing from the client
to server and back should be verified.

(c) Is the Request Send Time non negligible? If so, check the Total Bytes In measure
for the transaction. Again if this measure is very large, then it points to the
request message size. The application should be tuned to reduce this size.

3. If none of the preceding three measures are significant, then it points to processing
overhead within the server. This overhead includes processing time in the server
being monitored or processing time in the next tier server.

4. To determine contribution of next tier to the response time, obtain a correlation
report for the selected transaction. This functionality is available in ScrutiNet.

5. Obtain the number of connections n made to the next tier as input.
6. Sort the connections in the correlation report for connection response time. Select

the top n connections and sum up their response times. In many cases just based
on top active n connections, it can be deduced whether the current tier or the next
tier is the bottleneck. Otherwise, application specific data needs to be taken into
account to identify the relevant n connections. One method of getting application
specific data is to collect a ScrutiNet trace of a single user transaction in a test setup
of the same system.

If the above steps are repeated recursively from first tier to last tier, then we get a
breakup of transaction across tiers.

308 M. Nambiar and H.K. Kalita

4 Deployment of ScrutiNet in a Large Employee Appraisal System

ScrutiNet as shown in Fig. 2 is deployed to the data center for collection of data. The
network switch connecting all the servers and SSL Accelerator in the data center is port
mirrored2 to collect data at ScrutiNet workstation.

Primergy

PrimergyPrimergy

Primergy

Database server

Workflow server Workflow database server

ScrutiNet workstation

Passive network monitoring

Data center

Network switch

Application server

SSL Accelerator

Switch
Ethernet

Fig. 2. Large employee appraisal system monitoring using ScrutiNet

The following four servers were monitored using ScrutiNet for a period of
45 minutes.

Application Server APS
Database Server DBS
Workflow Server WFS
Workflow Database Server WFDBS

The four servers are logically connected to each other as shown in Fig. 3. Note that
in tier 1, the client is SSL Accelerator , and the servers are Application Server and
Workflow Server. In tier 2, the clients are Application Server and Workflow Server
whereas servers are Database Server and Workflow Database Server .

2 For passive network monitoring.

Performance Monitoring and Analysis of a OLTP System 309

Database Server

CLIENT

SERVER

CLIENT
SERVER

Tier 1

Tier 2

Workflow serverApplication Server

Workflow database server

APS

DBS

WFS

WFDBS

SSL Accelerator

Fig. 3. Two–tier connection in the employee appraisal system

5 Result Analysis

ScrutiNet collects and analyzes data to produce a report as shown in Fig. 4. From this
report, we can identify the top n number of slow transactions.

Fig. 4. ScrutiNet report shows the top two slow transactions in the Application Server

5.1 Application Server Transaction Analysis

Fig. 4 (rows 2 and 3, columns 1 and 6) shows that transactions having request numbers
6785 and 2817 have server response time of 56.12 seconds and 33.51 seconds, respec-
tively. Note that the meaning of all these columns are given in the Section 3.1. As the
server response time for these transactions is higher than the remaining ones, these two
transactions are considered as the top two slow transactions. Hence, the top two slow
HTTP transactions in the Application Server are:

1. POST./pages/goalSettingHome.jsf.HTTP/1.1
2. POST./pages/individualGoalSheetHome.jsf.HTTP/1.1

310 M. Nambiar and H.K. Kalita

The detailed ScrutiNet output for the two slow transactions are shown in Fig. 5 and
Fig. 6.

From Fig. 5, we can infer that request no 6785 passes from the SSL Accelerator (port
3673) to the Application Server (APS) and the Application Server takes 56.12 seconds
to respond.

Fig. 5. ScrutiNet report (Column 1 – 26) shows the top two slow transactions in the Application
Server (some columns are hidden)

Fig. 6. ScrutiNet report (Column 27) shows the top two slow transactions in the Application
Server

In Fig. 7, the response time breaks up for both the POST request transactions. It
shows percentage of delay of client, network, and other factors (for example, server
reaction time) contributed to the total response time. In both the transactions, client
delay is the major contributor.

When we follow the analysis algorithm presented in Section 3, we conclude that
the client delay is a major component of the response time for the POST request. This
means that the SSL Accelerator has been the major source of delay for this transaction.

As the client delay component has been identified as the major source of delay,
we will skip the step of correlation analysis for the next tier (database tier) for this
transaction.

Thus, the main findings for HTTP transactions on the Application Server are:

– Both the transactions have about 75% of client delay. As the SSL Accelerator is the
client to the Application Server , this delay can be attributed to the SSL Accelerator.
In general, this problem occurs when the response message is more than 150 KB
as can be seen in Fig. 5 in the column Total Bytes Out.

Performance Monitoring and Analysis of a OLTP System 311

Fig. 7. Response time breakups of the top two slow transactions in the Application Server

5.2 Workflow Server Transaction Analysis

Similarly, as per the ScrutiNet report, the slowest transaction in the Workflow Server is
an XML based query called QUERY PROPERTY (see Fig. 8 and Fig. 9), which is sent
by the Application Server . For this transaction, when we follow the analysis algorithm,
we see that the client window zero delay, request send time, or network overhead hardly
contribute to the response time. The delay, therefore, is either in the Workflow Server
or in the Workflow Database Server .

Fig. 8. ScrutiNet report (Column 1–26) shows the top slow transaction in the Workflow Server
(some columns are hidden)

Fig. 9. ScrutiNet report (Column 27) shows the top slow transactions in the Workflow Server

From the development team, it is understood that only one connection to the Work-
flow Database Server is made for each workflow transaction. As per the correlation
report in Fig. 10, we can see that the connection on port 62277 contributes significantly
to the response time of the workflow transaction QUERY PROPERTY. Fig. 11 shows
the requests made to the Workflow Database Server on connection 62277. The sum of
response times of all these transactions is 19.356 seconds as seen in the correlation
report in Fig. 10 (row 16).

312 M. Nambiar and H.K. Kalita

Fig. 10. ScrutiNet generated correlation report for the next tier of the top slow transaction in the
Workflow Server

Fig. 11. Transactions on connection port 62277 on the Workflow Database Server for the execu-
tion of QUERY PROPERTY transaction on the Workflow Server

The Workflow Database Server query in the connection was verified with the devel-
opment team to validate that the Workflow Database Server , indeed, was the bottleneck
for the workflow transaction.

6 Conclusion

In this paper, we have discussed our approach to the performance monitoring and analy-
sis of a large OLTP system, with an example of employee appraisal system. From the
observations made in this paper, it is clear that performance monitoring and analysis of
a large OLTP system requires analytical ability to determine the bottlenecks, but tools
can aid in this regard. ScrutiNet, a tool designed by TCS’s Performance Engineering

Performance Monitoring and Analysis of a OLTP System 313

Research Center was used to monitor and analyze the performance of OLTP transac-
tions regardless of the application type. Currently, the patent application for ScrutiNet
is pending. The tool, however, can be used by obtaining a user license from TCS. For
more information please contact the authors of this paper.

References

1. Nambiar, M., Parab, O.: ScrutiNet (2006),
http://tatainfotech.com/Solutions/TechProd TPS.html

2. Iwatch – A non-intrusive performance monitoring solution for client/server application envi-
ronments, http://www.exact-solutions.com/

3. Network General, http://www.netscout.com/products/
4. Compuware Vantage, http://www.compuware.com/
5. Crannog Software Response Watch, http://www.2crannog-software.com/
6. PasTmon – The Passive Application Response Time Monitor, http://pastmon.

sourceforge.net
7. HP Business Availability Center software,

http://www2.hp.com/solutions/bac/ds/4aa0-9272enw bac ds.pdf
8. Application Response Measurement, http://www.opengroup.org/management/

arm/
9. Aguilera, M.K., Mogul, J.C., Wiener, J.L., Reynolds, P., Muthitacharoen, A.: Performance

Debugging for Distributed Systems of Black Boxes. In: SOSP 2003, Bolton Landing, New
York, USA, October 19–22 (2003)

10. Roy, R.: Performance analysis for parallel applications. In: Monitoring Distributed Systems
for Diagnostic Purposes Workshop at Ericsson, Montral, January 29-30 (2008)

http://tatainfotech.com/Solutions/TechProd_TPS.html
http://www.exact-solutions.com/
http://www.netscout.com/products/
http://www.compuware.com/
http://www.2crannog-software.com/
http://pastmon.
sourceforge.net
http://www2.hp.com/solutions/bac/ds/4aa0-9272enw_bac_ds.pdf
http://www.opengroup.org/management/
arm/

S. Kounev, I. Gorton, and K. Sachs (Eds.): SIPEW 2008, LNCS 5119, pp. 314–321, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Speeding up STL Set/Map Usage in C++ Applications

Dibyendu Das, Madhavi Valluri, Michael Wong, and Chris Cambly

IBM
{dibyendu.das@in.ibm.com, mvalluri@us.ibm.com,

michaelw@ca.ibm.com, ccambly@ca.ibm.com}

Abstract. In this work we augment the red-black tree implementation of STL
set<…>/map<…> with a doubly linked list that is in sorted order. This is done
for the purpose of speeding up C++ applications that use set<>/map<>::iterator
considerably. In such cases, the doubly linked list helps in iterating over the
set<>/map<> quickly. Usually the ++/-- operations have an amortized cost of
O(1) for a red-black tree implementation. The linked list augmentation helps in
improving the ++/-- operations to Θ(1). In addition, our experiments for IBM’s
P5+ and P6 processors show that this mechanism improves performance for
two SPEC CPU2006 benchmarks and there is no adverse cache effect when we
support two additional pointers per node of a red-black tree.

1 Introduction

As modern-day programming becomes more involved and complex, programmers are
increasingly using tailor-made data structures that provide the correct functionality as
well as good performance. Standard Template Libraries (STL) are a part of C++
standard [7] that are provided by all C++ vendors and compilers. STL eases the
burden of the programmers by providing a number of ready-made data structures like
vector<...>, dequeue<...>, list<...>, set<...>, map<...> etc that allow programmers a
faster turnaround time. These data structures and their supporting methods are also
sufficiently generic so that they can be easily tailored to a wide range of situations. In
addition, these are written with performance and memory usage in mind. Such STL
implementations are hard to surpass both in terms of usability and performance by
code implemented from scratch.

In this work, we focus on two specific STL structures called the set<...> and the
map<…> (and its variants the multiset<…> and the multimap<…>). A
set<...>/map<…> is an associative container which is a collection of elements which are
unique (unless one uses the multiset<...>/multimap<…>). A map<…> differs from a
set<…> in storing additional satellite information with each key. Most STL vendors like
SGI, HP, STL Port and Dinkumware implement a set<…>/map<…> in the form of a
red-black tree [7]. The set/map is thus kept both unique and sorted as a virtue of its
implementation. Also, since set/map uses a tree as its underlying data structure in this
work we will use set<…> to represent either a set<…> or a map<…> and its variants.

The implementation of a set<...> as a tree places some restriction as far as iterators
of a set<...> are concerned. Iterators are data structures that move to the next/previous
element (by using ++ or --) of a STL data structure – the concept of next and previous

 Speeding up STL Set/Map Usage in C++ Applications 315

elements being defined by the data structure. For example for a vector<...> the
statement

 (vector<...>::iterator itr=vec.begin();itr!=vec.end(); ++itr)

will traverse the entire vector from vec[0] to vec[vec.size()-1]. Since, by definition,
the elements of a vector are not sorted, the ++ itr operation just moves over the vector
elements in no particular order other than the order in which these elements have been
stored in the vector. On the other hand, if an iterator is defined over a set<...>, then its
corresponding ++/-- operations move to the next sorted element in the set<...>. Thus

 (set<...>::iterator sitr=xSet.begin(); sitr!=xSet.end(); ++sitr)

results in the sitr traversing the xSet in such a way that the iterator points to the
next sorted element in non-decreasing order in the set with every ++ operation. For a
tree, such a traversal is not O(1) for every ++/-- operation, but has an amortized O(1)
complexity for a group of ++/-- operations. However, due to each ++/-- not working
in Θ(1) time, applications which use set<...> iterators heavily, may perform poorly as
we have observed in some SPEC CPU2006 applications [6].

We have found that by supporting an additional sorted linked list on top of the red-
black tree implementation while implementing the set<...> STL, we perform much
better when applications use set<...> iterators. Our experiments show that we gain
substantially for two SPEC CPU2006 benchmarks – dealII and xalancbmk when
compiled and run on the IBM Power5+ and Power6 processors.

2 Traditional Implementation of Set<...>

The traditional set<…> implementation in the C++ STL (originally published by HP
[7]) can be found in set* and xtree* files in the header include paths. Most of the
other vendors follow a very similar implementation. As mentioned earlier, a set<...> is
usually implemented as a balanced binary tree – specifically as red-black trees[5].
Red-black(RB) trees allow insertion and deletion in O(logn) and help maintain the
other complexity bounds prescribed in the C++ Standards. IBM's xlC compiler [10]
uses STL provided by Dinkumware. Its set<…> implementation is also based on red-
black trees. In the following example in Fig 1, we show a set of integers defined as
set<int> being represented as a RB tree.

Consider the set iSet defined as set<int> iSet, which has 9 nodes represented
as a red-black balanced binary tree. The red nodes are shaded lightly while the darker
ones are the black nodes. Now, consider an iterator for this set defined as

set<int>::iterator sitr = iSet.begin();

This positions sitr on the node marked 1.Applying the ++ operator on sitr
moves the iterator to the next sorted element in the set. This implies that if we invoke
++sitr 4 times, sitr will be positioned on the node marked 8 as shown in the
Fig 1. If we invoke ++sitr once more, the iterator needs to climb up the nodes 7 and
2 before it reaches 11 which is the next sorted element in the list. This requires 3 link
traversals. The subsequent ++sitr invocation results in 2 link traversals downwards,

316 D. Das et al.

Fig. 1. A set<int> iSet as a red-black tree

to 12. Thus it is fairly clear that we may need to traverse more than one link every
time we apply the ++ operator on sitr. If we do the arithmetic we will find that
sitr needs to traverse 12 links if we have sitr move from the begin() to the
end() of the set using a statement like the one shown below:

for (sitr = iSet.begin() ; sitr != iSet.end(); ++ sitr)

This averages to 12/9 = 1.3 links for the ++ operator when amortized. Though such
an amortized cost is well within the O(1) bound prescribed by the C++ STL standards,
it can have quite a negative impact on performance – especially for applications
which indulge in set iteration to a large extent.

3 Our Implementation of Set<...>

Our implementation of set<...> maintains a doubly linked list on top of the red-black
tree as shown in Fig 2. Each tree node maintains two additional _Next and _Prev
pointers pointing to the next sorted tree node in the non-decreasing order and non

Fig. 2. Our implementation

 Speeding up STL Set/Map Usage in C++ Applications 317

increasing order respectively. These pointers are shown as double edged dotted
pointers in the Fig 2. The list is sorted with respect to the elements of the set<...> so
that the ++ and -- operation on a set iterator can be supported in Θ(1) time complexity
instead of O(1). If sitr now points to 8 its _Next pointer points to 11 while its
_Prev pointer points to 7. 8 is also pointed at by 11’s _Prev pointer. This implies
exactly 1 link traversal for supporting every ++/-- operation.

The additional time required for insert() or delete() operations in set<...> to support
the doubly linked list is of complexity O(1). This implies very little overhead for these
operations while honouring the O(logn) time complexities prescribed in the standards.

4 Implementation Overview

This section outlines the main code changes carried out to implement our set<...> as
outlined above. We have modified the Dinkumware provided STL for that purpose.
At the current stage, the changes to the Dinkumware set<...> STL comes into effect
only under the special compiler #define __IBM_FAST_SET_MAP_ITERATOR.

We add two _Prev and _Next pointers to the basic red-black tree node class so
that we can support the sorted doubly linked list using these pointers. In this class we
support two new methods RB_next() and RB_prev() to navigate the doubly
linked list in both directions. The insert() method is invoked during set<…>
insertion which eventually inserts a node in a red-black tree. During insertion,
depending on whether the node is inserted as a left child or a right child, the _Next
and _Prev pointers are updated accordingly to reflect the position of the inserted
node in the sorted list. Fig 3 illustrates a general case when a new node _Z is inserted
to the left of a node _Y. The dotted edges represent the doubly linked list. In order to
insert _Z at the proper position in the sorted list, the relevant fields of
RB_Prev(_Y), _Y and _Z should be modified. The resultant tree with the new
sorted list is shown on the right of Fig 3.

Fig. 3. Insertion of a node in set<...> and its list update

In case of erase() the _Next/_Prev pointers are updated at the start of the
method body. This ensures that the node to be deleted is removed from the sorted
linked list even before the child and parent pointers are changed for actual deletion

318 D. Das et al.

Fig. 4. Deletion of a node and its list update

and subsequent rotation. Some implementations (ex the HP STL set<...>) may call
::swap(a,b) to swap the contents of two nodes before deleting one of them (say
b). In such implementations, the code needs to be modified accordingly, so that we
can back up the _Next/_Prev pointers of a and restore it after the ::swap has
been called. Our implementation does not require this change as the erase()
implementation does not invoke swap for copying contents of a node but manipulates
the parent pointers to carry out the actual deletion.

The following example in Fig 4 illustrates how the sorted list is maintained in case
of a generic deletion of a node via the erase() method. If the node marked 5 is to
be deleted, then, the sorted list is updated to reflect this as shown in Fig 4b. When the
node marked 5 is actually deleted, the _Left/_Right/_Parent pointers of the
tree are modified to create the tree shown in Fig 4c. The operator++ and operator-- in
the original set<...> implementation need to traverse multiple links to reach the next
sorted element in the tree. But, in our implementation we just need to follow the
_Next/_Prev links to correctly increment or decrement an iterator. The _Copy()
method of a set<…> is invoked from the operator=. This creates a new tree out of the
source tree by allocating new nodes and copying contents from the source nodes to
the destination nodes. Since the _Next/_Prev pointers of the new destination tree
needs to be created, we need to scan from the first to the last node in the new tree in
sorted order and set up the _Next/_Prev pointers accordingly. To do this we need
to traverse multiple links and traverse up/down the tree using the original ++/--
algorithms. The original ++ method does not use the _Next/_Prev pointers but
only the _Left/_Right/_Parent pointers. Setting up the _Next/_Prev
pointers of a copied tree takes an additional O(1) amortized time for every copied
node.

 Speeding up STL Set/Map Usage in C++ Applications 319

5 Performance

Our implementation of set<...> supported by a sorted doubly linked list has been
found to benefit a couple of SPEC CPU2006 benchmarks – dealII and xalancbmk.
Among the SPEC CPU2006 benchmarks omnetpp, dealII and xalancbmk use set/map.
dealII uses set<…>::iterator heavily while xalancbmk uses map<…>::iterator. The
effect of our implementation is more pronounced on dealII than on xalancbmk as the
iterators are hotter in the former. Also the map usages in omnetpp are cold. The
performance numbers are summarized in the tables below for P6 and P5+. We have
done peak runs using the highest optimization flag -O5 of the xlC compiler and with
profiling (pdf) enabled. Both the benchmarks pass the specdiff validation test.

Table 1. P6 Performance

Benchmark Original Time Modified Time % Improvement
dealII 502 398 20.7

Table 2. P5+ Performance

Benchmark Original Time Modified Time % Improvement
dealII 918 776 15.5
xalancbmk 754 732 2.9

6 Correctness

The correctness of our mechanism – that of supporting a sorted doubly linked list over
a tree, is based on several key observations. Firstly, when a node N is inserted into or
deleted from the tree, we update the _Next/_Prev links of the doubly linked list of
N even before rotation happens for rebalancing. This ensures that the list remains
correctly sorted before rotation starts. Secondly, rotation for balance does not disturb
the sorted linked list. Rotation changes the heights of nodes to maintain the red-black
properties. Also, rotation re-positions the _Left/_Right/_Parent pointers of
various nodes to achieve the balance, without actually creating new nodes or copying
from one node to another. Since changing only the _Left/_Right/_Parent
pointers have no bearing on the already constructed sorted list, the list remains
correctly sorted after rotation that may follow an insert or delete operation. Neither
during insertion nor during deletion, nodes are copied to or from other nodes at any
stage of the algorithms, ensuring correctness. For STL implementations that may use
node copying for deletion some extra code will be required to ensure correctness.

7 STL and Other Performance Implications

As stated earlier, our set<...> implementation honors all the performance complexities
prescribed by the C++ standards. Insertion and deletion are still O(logn) as we just
add constant time to an insertion/deletion in order to fix the sorted doubly linked list.

320 D. Das et al.

Iteration time improves to Θ(1) for every operation instead of the amortized O(1) time
complexity prescribed by the standards. Since we add two pointers to every node of
the tree, the size of the node increases. This raises the usual concern of whether this
may have cache performance implications [2, 3]. However, we noted that for P5 and
P6 processors, increasing the size of the node has almost no bearing on the cache
performance. This has been verified through the use of the performance monitoring
tool for P5 and P6 called pmcount[9].

8 Related Work

None of the existing implementations of the set<…>/map<…> STL that are used by
the commercial compilers, deviate too much from the red-black tree of the original
HP implementation [7]. The research work in [3] on the other hand uses a B-tree to
improve upon the set/map implementation. But their experimental results show that
while they are faster for scans and searches and comparable on insertions, they are
more than twice as costly for deletions when compared to a RB tree. AVL trees have
also been used instead of RB trees to implement sets and maps in [4]. The authors saw
small degradation for all operations when using the AVL tree implementation as
opposed to the RB tree implementation. The work in [2] evaluates various techniques
to speed up RB tree implementation for sets and maps. The techniques evaluated
range from removal of parent pointers, threading, compacting colour bits to providing
rank searches. Their experiments on basic insertion/deletions and search show that
their implementation is more space-efficient than the RB tree implementation used in
[7] and is usually as fast as the RB tree implementation. On some occasions their
implementation is faster. Their work on using threaded RB trees comes closest to our
work on supporting a doubly linked list on a RB tree. However, threading has several
disadvantages in having a high deletion time and the inability to work with multisets
and multimaps.

9 Conclusions

In this work we have shown that supporting a doubly linked list in the sorted order on
the tree that implements the STL set<...>/map<…>, enables performance gain for
some SPEC CPU2006 benchmarks that use set<...>/map<…>. It especially affects the
dealII and xalancbmk benchmarks in a positive way. Our implementation also honors
the C++ complexity bounds and does not have any detrimental effect on cache
performance due to the increased size of the nodes used to store the additional fields
that support the doubly linked list.

References

1. Meyers, S.: Effective STL. Addison Wesley Professional Computing Series (2001)
2. Bronimann, H., Katajainen, J.: Efficiency of Various Forms of Red-Black Trees. CPH

STL Report 2006-2, University of Copenhagen (2006)

 Speeding up STL Set/Map Usage in C++ Applications 321

3. Hansen, J.G., Henriksen, A.K.: The Multi map/set of the Copenhagen STL. CPH STL
Report 2001-6, University of Copenhagen (2001)

4. Lynge, S.: Implementing the AVL Trees for the CPH STL. CPH STL Report 2004-1,
University of Copenhagen (2004)

5. Cormen, H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. Prentice-
Hall, India (2006)

6. SPEC CPU 2006 benchmarks, http://www.spec.org
7. Stepanov, A., Lee, M.: The Standard Template Library, Technical Report HPL-95-11,

Hewlett Packard (1995)
8. ISO/IEC 14882:1998 and ISO/IEC 14882:2003(E) Standard for the C++ Programming

Language
9. pmcount, http://www-128.ibm.com/developerworks/power/library/pa-cpipower2/

10. IBM XL Compilers and White Papers,
http://www.ibm.com/software/awdtools/ccompilers
http://www1.ibm.com/support/docview.wss?rs=32&context=SSEP5D
&uid=swg27007322
http://www-1.ibm.com/support/docview.wss?rs=43&context=
SSEP9Q&uid=swg27005175

Author Index

Alekseev, Sergej 283

Bause, Falko 208
Becker, Steffen 79
Bocciarelli, Paolo 228
Bonebakker, Lodewijk 144
Bradley, Jeremy T. 29
Buchholz, Peter 208

Cambly, Chris 314
Cheng, Xiaoqing 174

D’Ambrogio, Andrea 228
Das, Dibyendu 314
Dencker, Tobias 79

Fay, Damien 154

Giesecke, Simon 283
Götz, Clarissa 4
Gray, Larry D. 262

Haddadi, Hamed 154
Happe, Jens 79
Harchol-Balter, Mor 1
Hasselbring, Wilhelm 124, 283
Hayden, Richard 29
Hoorn, André van 124, 283

Jamakovic, Almerima 154

Kalita, Hemanta Kumar 303
Knottenbelt, William J. 29
Koziolek, Heiko 58
Kriege, Jan 208
Kumar, Anil 262

Li, Harry H. 262

Marquard, Ulrich 4
Matevska, Jasminka 283
Mitrani, Isi 247
Moore, Andrew 154
Mortier, Richard 154

Nambiar, Manoj 303

Reinecke, Philipp 191
Reussner, Ralf 58
Rio, Miguel 154
Rohr, Matthias 124, 283

Slegers, Joris 247
Suto, Tamas 29
Szebenyi, Zoltán 99

Thomas, Nigel 44, 247

Uhlig, Steve 154

Valluri, Madhavi 314
Vastag, Sebastian 208

Wolf, Felix 99
Wolter, Katinka 191
Wong, Michael 314
Woodside, Murray 9
Wylie, Brian J.N. 99

Zhao, Yishi 44

	Title Page
	Preface
	Organization
	Table of Contents
	Scheduling for Server Farms: Approaches and Open Problems
	SAP Standard Application Benchmarks -IT Benchmarks with a Business Focus
	The Acid Tests for Business Technology: Reliability, Predictability and Scalability
	Methodology and Principles Behind the SAP Standard Application Benchmarks
	Shaping the SAP Standard Application Benchmarks
	Conclusion

	The Relationship of Performance Models to Data
	Motivation
	Software Performance Analysis
	A Unified Process
	Data-Centric View
	Model-Centric View
	Inference: Knowledge and Uncertainty

	Illustration: Queueing Model
	Structure

	Illustration with a Layered Model
	Exploiting the Model
	Validity of the Model
	Simplified Models

	Conclusions
	References

	Extracting Response Times from Fluid Analysis of Performance Models
	Introduction
	Stochastic Process Algebra and Fluid Modelling
	PEPA
	Fluid Analysis
	Numerical Vector Form and ODE Generation

	Response-Time Generation
	Constructing an Absorbing PEPA Model
	Processor--Resource Example

	Worked Example: Healthcare System
	Comparison with a CTMC-Derived Passage Time

	Conclusion

	Approximate Solution of a PEPA Model of a Key Distribution Centre
	Introduction
	Key Distribution Centre
	PEPA
	The Models
	Model Simplification and Approximation
	Numerical Results
	Conclusion and Further Work

	A Model Transformation from the Palladio Component Model to Layered Queueing Networks
	Introduction
	Related Work
	Foundations
	Palladio Component Model
	Layered Queueing Networks

	Model Transformation
	Process
	Transformation 1: Dependency Solver
	Transformation 2: PCM2LQN

	Case Study
	Limitations
	Conclusions

	Model-Driven Generation of Performance Prototypes
	Introduction
	Related Work
	Model-Driven Performance Evaluation
	Performance Prototype Generation
	Static Structure
	Dynamics
	Allocation
	Workload Driver

	Resource Demand Calibration
	Determining the Input Value for a Specific Resource Demand
	Resource Demand Break Down
	Discussion

	Case Study
	Discussion
	Conclusions

	SCALASCA Parallel Performance Analyses of SPEC MPI2007 Applications
	Introduction
	Experiment Configuration
	SPEC MPI2007 1.0 Benchmark Suite
	IBM SP2 Regatta p690+ System
	SCALASCA Toolset

	Results and Analyses
	$107.leslie3d$
	$129.tera tf$
	$132.zeusmp2$
	Review of SCALASCA SPEC MPI2007 Benchmark Analyses

	Conclusions and Future Work
	References

	Generating Probabilistic and Intensity-Varying Workload for Web-Based Software Systems
	Introduction
	Background and Related Work
	Our Workload Generation Approach
	Workload Specification
	Workload Generation

	Tool for Generating Probabilistic and Intensity-Varying Workload
	Apache JMeter
	Markov4JMeter

	Case Study
	JPetStore
	Workload Specification
	Test Plan
	Measurement Results

	Conclusions

	Comparison of the SPEC CPU Benchmarks with 499 Other Workloads Using Hardware Counters
	Introduction and Outline
	Workload Set Composition
	Data Collection and Reduction
	Dimensionality Reduction and Workload Comparison
	Observations
	Summary and Conclusions

	Tuning Topology Generators Using Spectral Distributions
	Introduction
	Related Work
	Graph Spectra
	Available Topologies
	Synthetic Topologies
	Waxman
	BA
	GLP
	Inet
	PFP
	Observed Topology

	Results
	Link Densities
	Spectra PDF
	Limitations of Spectra CDF
	Weighted Spectra
	Weighted Spectra Comparison

	Generating Topologies with Optimum Value Parameters
	Conclusions

	Performance, Benchmarking and Sizing in Developing Highly Scalable Enterprise Software
	Introduction
	A KPI-Focused Approach for Performance Testing, Analysis and Optimization
	Performance Design Patterns
	Key Performance Indicators Reliably Predict Possible Performance Issues
	Java Memory KPIs and GC Tuning
	KPI-Focused Performance Testing, Analysis and Optimization

	Benchmarking
	Sizing
	Conclusion

	Phase-Type Approximations for Message Transmission Times in Web Services Reliable Messaging
	Introduction
	Acyclic Phase-Type Distributions (ACPH)
	Experiments
	Experiment Setup
	Measurement Preparation

	Phase-Type Approximations
	Data Set Characteristics
	ACPH(2)-Approximation
	Hyper-Erlang Approximation
	ACPH Parameters

	Evaluation
	Application
	Conclusion and Future Work

	A Framework for Simulation Models of Service-Oriented Architectures
	Introduction
	Process Chain Models
	Modelling Networks and Protocol Stacks
	Combining Both Worlds
	Application Example
	Conclusions

	Model-Driven Performability Analysis of Composite Web Services
	Introduction
	QoS-Enabled WSDL (Q-WSDL)
	Model-Driven Performability Prediction of Composite Services
	Performance Prediction
	Reliability Prediction
	Performability Prediction

	Example Application
	Conclusions
	References

	Dynamic Server Allocation for Power and Performance
	Introduction
	Modeling the System
	Policies
	Optimal Static Allocation
	Idle Heuristic
	Threshold Heuristic
	Semi-static Heuristic
	High/Low Heuristic
	Average Flow Heuristic

	Results
	Increased Bursts
	Increasing Cost Differential
	Asymmetrical Switching Times
	The Threshold Policy

	Conclusions and Future Work

	Workload Characterization of the SPECpower ssj2008 Benchmark
	Introduction
	A Little History

	SPECpower_ssj2008 Overview
	Measuring Power with Performance
	The Measurement Framework
	A Graduated Workload

	Server Resource Utilization
	Overview
	Resource Usage and Platform Power Consumption

	SPECpower_ssj2008 Metric Definition
	The Primary Metric
	Unprecedented Data in Full Disclosure Report

	Platform Hardware and Software Details
	Platform Configuration Details

	SPECpower_ssj2008 Characterization Data
	SSJ_2008-- per JVM Instance
	Processor Utilization
	Power and Processor Utilization
	Power, ssj_ops, and Processor Utilization
	% Time in C1 State
	Memory Utilization
	Network I/O
	Disk I/O
	Basic System Events
	Impact of JVM Optimizations
	Processor Scaling
	Frequency Scaling
	Platform Generation Scaling

	Benchmark as Load Generating Tool
	Impact of Different Batch Sizes
	Impact of Different Transaction Mix
	Impact of More Threads
	Single Queue vs. Dedicated Queue
	Numerous Other Experiments

	System Configuration Considerations
	Performance Factors
	Power Factors

	Conclusions

	Trace-Context Sensitive Performance Profiling for Enterprise Software Applications
	Introduction
	Calling-Context Dependence of Software Response Time Distributions
	Software Response Time Distribution Characteristics
	Calling-Context Specific Timing Behavior

	Approach to Calling-Context Sensitive Timing Behavior Modeling
	Software Behavior and Its Monitoring
	Types of Calling-Context Equivalence
	Example: Trace-Context Analysis

	The Calling-Context Tree
	Undesired Calling-Context Analysis Results
	Construction of the Calling-Context Tree
	Modification of the Calling-Context Tree

	Case Study
	Setting
	Results

	Discussion and Limitations
	Monitoring Overhead
	Distributed Software Systems
	Representativeness and Completeness of Monitoring Data
	Considering Other Types of Calling-Context Information

	Related Work
	Conclusions

	Performance Monitoring and Analysis of a Large Online Transaction Processing System
	Introduction
	Related Work
	Performance Monitoring and Analysis Using ScrutiNet
	ScrutiNet Report Format
	Correlation Functionality in ScrutiNet
	Performance Monitoring and Analysis -- ScrutiNet Based Approach

	Deployment of ScrutiNet in a Large Employee Appraisal System
	Result Analysis
	Application Server Transaction Analysis
	Workflow Server Transaction Analysis

	Conclusion

	Speeding up STL Set/Map Usage in C++ Applications
	Introduction
	Traditional Implementation of Set<...>
	Our Implementation of Set<...>
	Implementation Overview
	Performance
	Correctness
	STL and Other Performance Implications
	Related Work
	Conclusions
	References

	Author Index

